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Abstract

Background: The high incidence, seasonal pattern and frequent outbreaks of hand, foot and mouth disease
(HFMD) represent a threat for billions of children around the world. Detecting pre-outbreak signals of HFMD
facilitates the timely implementation of appropriate control measures. However, real-time prediction of HFMD
outbreaks is usually challenging because of its complexity intertwining both biological systems and social systems.

Results: By mining the dynamical information from city networks and horizontal high-dimensional data, we
developed the landscape dynamic network marker (L-DNM) method to detect pre-outbreak signals prior to the
catastrophic transition into HFMD outbreaks. In addition, we set up multi-level early warnings to achieve the
purpose of distinguishing the outbreak scale. Specifically, we collected the historical information of clinic visits
caused by HFMD infection between years 2009 and 2018 respectively from public records of Tokyo, Hokkaido, and
Osaka, Japan. When applied to the city networks we modelled, our method successfully identified pre-outbreak
signals in an average 5 weeks ahead of the HFMD outbreak. Moreover, from the performance comparisons with
other methods, it is seen that the L-DNM based system performs better when given only the records of clinic visits.

Conclusions: The study on the dynamical changes of clinic visits in local district networks reveals the dynamic or
landscapes of HFMD spread at the network level. Moreover, the results of this study can be used as quantitative
references for disease control during the HFMD outbreak seasons.

Keywords: Hand, foot and mouth disease (HFMD) outbreaks, Pre-outbreak signals, Critical transition, City network,
Landscape dynamic network marker (L-DNM)

Background
Hand, foot and mouth disease (HFMD) is a global infec-
tious disease that has been reported in many countries
around the world, especially in the Asia-Pacific region.
Since June 2019, a severe outbreak of HFMD has occurred
in multiple regions of Japan, which attracted people’s

attention once again. Generally, the main etiologic agents
of HFMD are human enterovirus 71 (EV-A71) and
Coxsackievirus 16 (CV-A16) [1]. Although usually mild—
with symptoms limited to 38 °C fever, malaise, rashes on
the volar regions of the hands and feet, herpangina and
difficulty in eating and drinking, infection may lead to se-
vere complications of the nervous or cardiopulmonary
systems [2]. For some cases, HFMD results in long-term
sequelae such as cognitive and motor disorders [3, 4] or
even death. Moreover, global epidemiology of HFMD and
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its social consequences have been documented in the past
decade, especially in Japan [5], Singapore [6] and mainland
China [7, 8], where large-scale outbreaks of HFMD have
occurred, resulting in a substantial costs of epidemics to
the economy and global public health concerns.
Early recognition of pre-outbreak signals of HFMD

and timely preventive measures can greatly reduce the
magnitude and distribution of infection. However, due
to the lack of public health infrastructure and economic
incentives, which lead to the inability to recognize the
potential progression of an epidemic [9, 10], it is still
challenging to predict the HFMD outbreaks in a timely
manner. Fortunately, with the disclosure of real-time
monitoring data, an appropriate method of calculation is
needed to identify pre-outbreak signals based on avail-
able data of HFMD, thus simplifying the process of data
collection and monitoring.
In this study, we develop a computational method, the

so-called landscape dynamic network marker (L-DNM),
to detect the early-warning signals of HFMD outbreaks.
First, in a dynamical modelling way, the stage before the
outbreak of HFMD is regarded as a pre-transition stage,
immediately after which the system undergoes a critical
transition. Then the dynamical process of an epidemic
system can be roughly modelled as three stages, i.e., a
normal stage, a pre-outbreak stage and an outbreak
stage. According to L-DNM method, when the system
transits from the normal stage to the pre-outbreak stage,
the city network changes significantly and L-DNM score
rises sharply (Fig. 1b). Unlike the traditional detection of
the outbreak stage, the L-DNM method can identify the
pre-outbreak stage that generally has no clear abnormal-
ities but with high potential of state transition into a
severe and irreversible stage. The proposed L-DNM is
mainly based on a theoretical background of dynamic
network biomarker (DNB) method [11], which identifies
the critical state of complex diseases by analyzing the
dynamics of driven biomolecules (i.e., a group of genes
and proteins that are the leading factors to the critical
state transition). The DNB method has been applied to a
number of biological progresses and achieved satisfac-
tory results, including identifying the critical points of
cell fate decision [12] and cellular differentiation [13],
and detecting the critical period during various bio-
logical processes [14–17]. Different from micro-
biomolecular networks which are constructed mainly
based on regulations among genes and proteins, macro-
city networks can be built according to the geographical
distribution and population mobility among regions [18].
Based on such city network, the L-DNM approach helps
to study the dynamics of epidemic and effectively detect
the early-warning signals of any potential disease out-
breaks. We applied the L-DNM method to a set of real-
time clinic hospitalization records of HFMD, which were

collected from 175 clinics distributed in 23 wards of
Tokyo, Japan, 139 clinics distributed in 30 wards of
Hokkaido, Japan, and 197 clinics distributed in 11 wards
of Osaka, Japan (Fig. 1a). The results show that L-DNM
method effectively monitors the epidemic process of
HFMD and successfully detect the pre-outbreak signals
about 5 weeks before the actual peak of the outpatient
number. Besides, for each outbreak, the L-DNM method
reveals the temporal and spatial information of HFMD
transmission at the city network level. Therefore, such
method is of great applicable potential in public health
management, which may help to develop new control
strategies for HFMD before its outbreaks (Fig. 1c).

Methods
Theoretical background
The theoretical basis of this research is the dynamic
network biomarker (DNB) method [11]. Specifically,
when a complex dynamic system approaches a critical
point, there exists a dominant group defined as the DNB
group that satisfies the following three properties [19]:

i) The standard deviation (SDin) for any member in
the DNB group increases sharply;

ii) The correlation (PCCin) between any pair of
members in the DNB group increases rapidly;

iii) The correlation (PCCout) between one member of
the DNB group and any other non-DNB member
decreases rapidly.

Based on the above three properties, it is possible to
find a group defined as the dynamical network marker
(DNM) group of highly correlated variables with strong
fluctuations, the emergence of which means an upcom-
ing state transition during a biological process. Then,
these three properties are applied to detect the critical
state as an early warning signal of diseases. In order to
quantify the critical state, IDNM is used as a composite
index to quantitatively measure the critical signal:

IDNM ¼ PCCin

PCCout
SDin:

Whenever the IDNM score increases significantly, it is
considered that the system is close to the critical transi-
tion point. The detailed description and derivation of
DNB can be found in the reference [20] and its Supple-
mental Information.
Based on the DNB theory, the dynamical process of

HFMD outbreaks is roughly divided into the following
three stages (Fig. 1b) similar to the dynamics of disease
progression [11]: the normal stage, which has stable
dynamic characteristics with high resilience; the pre-
outbreak stage, which is dynamically unstable and with
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low resilience. In this stage, the epidemic is still control-
lable through appropriate measures; and the outbreak
stage, which is another stable stage with high resilience.
Obviously, identifying the warning signals in the pre-
outbreak stage is the key to implement effective control
management to prevent HFMD outbreaks. However, un-
like the outbreak stage with a large number of clinic
visits, there is little significant difference between the
pre-outbreak stage and the normal stage. In order to
detect the pre-outbreak signals of HFMD more accur-
ately, we developed the landscape dynamic network
marker (L-DNM) method which is applied to the histor-
ical records of HFMD and analyze the local and global
city network.

Landscape dynamic network marker (L-DNM)
The L-DNM method is illustrated in Fig. 2 and
described in the following three steps.

Modeling and mapping
In the first step, we construct the city network based on
the geographic distribution of the wards/districts and
their adjacent information. In the network, each node
represents a ward, while each edge represents the adja-
cent relation between two wards. Then the records of
HFMD outpatients within a 5-week sliding window are
mapped to the city network. The city network model is
demonstrated as in Fig. 3.

Fig. 1 Schematic diagram to detect pre-outbreak signals of HFMD based on the L-DNM method. a The historical information of clinics
hospitalization due to HFMD infection from January 1, 2009 to December 31, 2018, was collected from public records in Tokyo, Hokkaido and
Osaka, Japan. b According to the DNM theory, the process of HFMD outbreaks is divided into three stages, including the normal stage, the pre-
outbreak stage and the outbreak stage. The sudden increase in the DNM score indicates a transition from the normal stage to the pre-outbreak
stage, i.e., the critical point before the upcoming outbreak of HFMD that results in an increase in clinical visits. c Based on the historical and
current clinical records and geographic characteristics of a region, the DNM score provides an early warning signal of an upcoming outbreak of
HFMD as a real-time indicator
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Calculating L-DNM score
In the second step, the city network is divided into local
networks piece by piece, each of which contain a central
node/ward and all of its first-order neighbors. For a local
network with n members (i.e., a central node and n-1
first-order neighbors), we calculate the local-network
index It at a sampling point t by the following definition:

It ¼ ΔSDt inð Þj j ΔPCCt inð Þj j þ ΔPCCt outð Þj j½ �;
where

ΔSDt inð Þj j ¼
Pn

i¼1 SDt ið Þ − SDt − 1 ið Þj j
n

is the average differential standard deviation (in absolute
value) of the nodes in the local network;

ΔPCCt inð Þj j ¼
Pn

i¼1; j¼1 PCCt i; jð Þ − PCCt − 1 i; jð Þj j
n� n

is the average differential Pearson’s correlation coeffi-
cient (in absolute value) within the local network. That
is, nodes i and j are both in the same local network;

ΔPCCt outð Þj j ¼
Pn

i¼1; j¼1 PCCt i; jð Þ − PCCt − 1 i; jð Þj j
n� n

is the average differential Pearson’s correlation coefficient

(in absolute value) between a member (node i) in the local
network and that (node j) outside.
Clearly, during the pre-outbreak stage, i.e., at a sam-

pling point t ∈critical state, there are three cases for each
local network:

� In the local network, all the nodes are DNM
members;

� In the local network, there are DNM and non-DNM
members;

� In the local network, all the nodes are non-DNM
members.

As shown in Table 1, for the above three cases
respectively, there are significant changes for the statis-
tical indices of each local network. Obviously, each
node or ward corresponds to an index value, It, which
can quantitatively characterizes the criticality of each
node at a sampling point t. As time evolves, a landscape
can be constructed based on those It scores of all
nodes. According to Table 1, the It score of each DNM
node increases sharply based on the three statistical
conditions of DNM. Therefore, during the process of
transition from the normal stage to the outbreak stage,
the DNM group helps to detect the early warning signal
of the critical state.

Fig. 2 The algorithm of landscape dynamic network marker. The flow chart above shows how the algorithm works based on city networks and
the historical information of clinic hospitalization. Regarding a point T = t (t > 5) as a candidate tipping point, L-DNM scores can be calculated. If
the L-DNM score increases significantly, the candidate T = t is determined as the identified tipping point, and the algorithm ends. Otherwise, if
there is no significant change in the score, then T = t is classified as a time point belonging to the normal stage, and the algorithm continues
with T = t + 1 being a new candidate tipping point

Zhang et al. BMC Infectious Diseases 2021, 21(Suppl 1):6 Page 4 of 10



Identifying multi-level early warnings
It is observed that a severe outbreak of HMFD occurs
in every 2 to 3 years. For example, in 2013, 2015 and
2017, the number of infected patients was signifi-
cantly more than that in other years. Taking this fact
into consideration, we set up a multilevel early warn-
ing system, including the mild (orange) warning and
the severe (red) warning. Specifically, an adjustable
threshold Mthreshold is applied to identify the signifi-
cant changes of It scores, which is given as the
following formula:

Mthreshold ¼
Pn

i¼1It ið Þ � t − 1ð Þ
Pt − 1

j¼1

Pn
i¼1I j ið Þ

where It(i) represents the score It of the central node i at
a time point t for the local network with n members.
The above threshold is then determined by the specific

historical records of a region. For example, based on the
clinic hospitalization records of HFMD in Tokyo, a 5-fold-
change threshold is considered as the orange warning and
an 8-fold-change threshold is regarded as the red warning.

Table 1 Critical behaviours of a central node’s L-DNM score for different cases

Case Nodes SDt ∣ΔSDt(in)∣ PCCt(in) |ΔPCCt(in)| PCCt(out) |ΔPCCt(out)| It

1 All DNM ↗ ↗ ↗ ↗ D↗ ↗ ↗

N↘

2 DNM and non-DNM D ↗ ↗ D↗ ↗ D↗ ↗ ↗

N↘ ↗ N↘ ↗

N → 0 D↘ ↗ D↘ ↗

N→ 0 N→ 0

3 All non-DNM → 0 → 0 D↘ ↗ 0

N→ 0

Notes: When the system moves from time point t − 1 to t, it is approaching the critical point
1. “↗” represents the increase of variables; “↘” represents the decrease of variables; “→” represents that there is no significant change in the variables;
2. “D” represents the DNM members; “N” represents the non-DNM members;
3. SDt is the average standard deviation at time point t; PCCt(in) is the average Pearson’s correlation coefficient between two nodes within the local network;
PCCt(out) is the average Pearson’s correlation coefficient between a node inside the local network and a node outside

Fig. 3 The city network model of Tokyo. a A 23-node network model was constructed based on the geographic information and adjacent
relationships of the 23 wards. b For each week, the average number of clinic visits in the ward was mapped to the corresponding node, through
which we obtained a data matrix of 23 rows/wards and 522 columns/weeks. c A detailed list of correspondences between wards and nodes,
including the number of clinics in each ward
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In this study, the similar way to determine the adjustable
threshold is also applied to the datasets of Hokkaido and
Osaka.

Data processing
Data normalization
The process of data normalization is important for pre-
dicting outcomes since the population of each ward/dis-
trict is roughly proportional to the number of clinics.
The raw data was averaged by the total number of
clinics inside the ward/district.

Sliding window
In the calculation process, we processed the original data
by window shifting, where the window width was set as
5. In other words, the standard deviation and correlation
coefficient were calculated based on the data within
every 5 weeks.

Results
Identifying pre-outbreak signals of HFMD in Tokyo
The transmission of HFMD is a complicated dynamical
system with a lot of biomedical and social factors. Due
to the massive number of influencing factors, it is diffi-
cult to mathematically describe such transmission dy-
namics in a high-dimensional space. The sharp or
qualitative transition from the normal state to the out-
break state of the local network corresponds to the bi-
furcation point in the theory of dynamic systems [21].
Based on this theory, if the system approaches the bifur-
cation point, it will eventually be constrained to one-
dimensional or two-dimensional space (i.e., the centre
manifold in general sense), where the dynamic system
can be expressed in a very simple form. This is the the-
oretical basis for developing a generic indicator that can
detect pre-outbreak signals of HFMD based on observed
data.
As shown in Fig. 1, we collected the historical informa-

tion of clinic hospitalization caused by HFMD infection
from January 1, 2009 to December 31, 2018 in Tokyo,
Japan. The outbreak point of HFMD was defined as the
peak of the hospitalization counts every year. According to
the first step of L-DNM method, a 23-node network was
constructed based on the geographic distribution of 23
wards and their adjacent relationships (Fig. 3).
Provided as in Fig. 4, the pre-outbreak signals were

identified through L-DNM method for each seasonal
outbreak of HFDM. It can be seen that an uncontrol-
lable outbreak of HFMD occurs every 2 to 3 years. For
example, in 2011, 2013, 2015 and 2017, the peak of the
total hospitalization counts was about four times that of
other years. In particular, CV-A6 emerged as a primary
causative agent in 2011, causing the largest HFMD epi-
demic in Japan since 1981 [22]. Since then, CV-A6 has

caused large HFMD epidemics every 2 years. In addition,
as shown in Fig. 4, the orange warning signal indicates
that the infection of HFMD has entered a pre-outbreak
stage, and the red signal successfully warns a large out-
break of HFMD. Therefore, for each HFMD outbreak
later developing into a large outbreak, the L-DNM score
is sensitive and significantly increases about 5 weeks be-
fore the actual number of hospitalizations skyrockets.
To better illustrate the L-DNM method’s principle, we

show the landscape for L-DNM scores of every local
network as in Fig. 5. As time evolves, the landscape can
be constructed based on the L-DNM scores of all nodes.
It can be seen that the first discovered pre-outbreak sig-
nal is 4–8 weeks ahead of the HFMD outbreak point
defined at the peak of hospitalization counts. The suc-
cessful prediction of each HFMD outbreak in different
regions demonstrates the robustness and effectiveness of
L-DNM method in identifying real-time warning signals
for infectious diseases.
In addition, we also introduce the dynamic evolution

of the transmission network of HFMD in Tokyo. Figure 6
shows that the L-DNM score of each node is mapped to
the actual map. When the actual number of clinic visits
does not increase significantly as shown, L-DNM
method has identified the pre-outbreak signal. In other
words, as the system approaches the bifurcation point,
the correlation both the local network and adjacent
wards increases dramatically, which indicates abnormal
changes of the system. The dynamic evolution of city
networks reveals the transmission situation and trend of
HFDM, and better presents the transmission dynamics
at the network level of the system.

Application of L-DNM in Hokkaido and Osaka
In order to verify the effectiveness of our model, we also
applied L-DNM to detect pre-outbreak signals of HFMD
in Hokkaido and Osaka, Japan. The results are shown in
Figures S2-S6 of Additional File [see Additional file 1].
As can be seen from Figure S2, 30 wards of Hokkaido

were modelled as a 30-node city network. Figure S3
shows that there were seven seasonal normal outbreaks
and three large-scale outbreaks of HFMD in Hokkaido
between year 2009 and year 2018, among which L-DNM
method provided pre-outbreak signals to nine outbreaks.
It can be seen that the dynamic evolution of L-DNM
scores for each local network from Figure S4. The mod-
elling and mapping process of Osaka is similar, which is
shown in Figure S5. For Osaka (Figure S6), seven HFMD
outbreaks occurred from year 2012 to 2018, among
which L-DNM method provided pre-outbreak signals
for five outbreaks accurately. After the difference ana-
lysis of city networks, the reason we get is that the num-
ber of Osaka’s network nodes is relatively small, which
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Fig. 5 The landscape of L-DNM score for 23 wards in Tokyo. In each landscape figure, the L-DNM scores of 23 wards in Tokyo are presented
annually. The orange column points to the first appearance of warning signals, the red column indicates that the scale of infection is expanding
and the pink column indicates an outbreak. Obviously, the warning signals are sensitive and effective. For the 10-year landscape figures, please
see Figure S1 in additional file [see Additional file 1]

Fig. 4 Forecast of seasonal HFMD outbreaks in Tokyo between the years 2009 and 2018. In each subgraph, the left y-axis is the average number
of patients in each clinic and the right y-axis is the L-DNM score that was calculated based on a 5-week sliding window scheme; the x-axis
represents the period from first week of the year to last week of the year. Besides, the markers of different colors and shapes are used to identify
warning signals or outbreak points. Clearly, when the actual number of clinic visits has not increased significantly, significant changes in L-DNM
scores have been detected, indicating the presence of pre-outbreak signals
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leads to the inadequate expression of network
information.

Performance comparison with other methods
According to Tokyo Metropolitan Infectious Disease
Surveillance Center, the benchmark for alerting infec-
tious disease epidemics is an average of five patients per
clinic. Obviously, the alarm appears too late to take
effective preventive measures. In addition, there are no
alarm signals in some years, such as 2010, etc. Therefore,
if L-DNM method is used, the above shortcomings can
be overcome. Moreover, the performance of comparing
L-DNM method with machine learning algorithm is
shown in Fig. 7. Specifically, logistic regression algorithm
and support vector machine (SVM) are applied to infec-
tious disease surveillance system [23–26]. As can be
clearly seen from Fig. 7, a DNM-based system performs
better than a system based on logistic regression or
SVM when only hospitalization records are given. In
recent years, deep learning approaches, such as a time
series model with long short-term memory (LSTM) [27],
have been applied to simulate the seasonality and trends
of infectious diseases incidence. But It is necessary for
LSTM to collect time-series data for many years, which
is unrealistic for some developing countries. And since
the sample length and time periods adopted to construct
the models might have an impact on the forecasting
power, additional data categories, such as meteorological

data and search engine query data, are provided to test
the robustness of the developed models [28, 29]. It
should be noted that L-DNM warning system proposed
in this work is entirely based on the number of clinic
visits per year. That is to say, based on the data of 1 year,
our model can monitor and identify the pre-outbreak

Fig. 6 Dynamic evolution map of L-DNM scores in Tokyo. Maps respectively in the 15th week (the normal stage), the 20th week (the pre-
outbreak stage), the 25th week (the pre-outbreak stage) and the 30th week (the outbreak stage), are colored by the scaled value of L-DNM score
(left of each submap) and the number of real clinic visits (right of each submap). It can be seen that the maps have no significant changes
during the normal stage (e.g., the 15th week). However, as the system approaches the pre-outbreak stage (e.g., the 20th–25th week), the maps
change dramatically, reflecting the apparent early warning signals of the upcoming outbreak

Fig. 7 The performance comparisons of L-DNM-based and machine-
learning-based methods. It can be seen that the L-DNM-based
surveillance system performs better than the logistic regression or
SVM using only the records of Tokyo clinic visits. The AUC of L-DNM
is 0.8831, while that of support vector machine is 0.8441 and that of
logistic regression is 0.8396
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signal in real time. Obviously, in order to solve practical
problems, the size of small samples should also be set
appropriately. That is to say, at least five samples should
be given since the samples is processed by window shift-
ing where the width of window is set to 5.
Actually, compared with traditional machine learning

algorithms and deep learning approaches, L-DNM
method has the following natural advantages. First, it is
a model-free approach that does not require training
and testing processes. There is no feature selection in L-
DNM strategy, which solely depends on three statistical
conditions of our model. Second, our approach can rely
on small samples rather than years of time series data.
So it can be applied in some developing countries that
lack public health infrastructure.

Discussion
Recently, a large outbreak of HFMD has occurred in
Japan, which attracts considerable attention. According
to World Health Organization (WHO), a large number
of outbreaks of HFMD have been reported in countries
of the Western Pacific Region over the last decade, in-
cluding Japan, Malaysia and Singapore, and across China
[30]. Those outbreaks not only make infected children
suffer from illness, but also make parents panic. The in-
cidence of HFMD appears to be increasing throughout
the Asia-Pacific. This has prompted concerns that, with-
out intervention, the public health impact and spread of
the disease will continue to intensify. In order to combat
the prevalence of HFMD, it is essential to establish a
monitoring system that relies solely on robust informa-
tion, such as the real-time number of clinic visits. From
the successful application of the proposed approach, it is
seen that the L-DNM is a model-free method, which is
data-driven and thus of great potential in practical real-
time monitoring.
Specifically, unlike the critical transformation

analysis based on DNB of complex diseases with gen-
omic datasets, DNB method has been improved and
applied to macroscopic city networks. Using a large-
scale metropolitan-wide HFMD surveillance dataset
over the past decade, the landscape dynamic network
marker incorporating the dynamical information of
city networks is fitted to facilitate accurate and timely
pre-outbreak detection. In addition, hundreds of
wards can be monitored simultaneously and the out-
break risk can be assessed by landscape DNM scores,
as presented in Figs. 5 and 6. It is noteworthy that L-
DNM method proposed in this paper is based entirely
on the number of real-time clinic visits and has ob-
tained the remarkable results. Given more information
about epidemic transmission, the L-DNM-based sur-
veillance system is expected to reliably predict HFMD
outbreaks in terms of sensitivity and accuracy.

Conclusion
In this study, we proposed a computational method, the
so-called landscape dynamic network marker (L-DNM),
solely based on hospitalization records. In order to verify
the effectiveness of our method, we illustrated the appli-
cation of L-DNM to detect pre-outbreak signals of
HFMD in Tokyo, Hokkaido and Osaka, Japan. This
method can effectively identify the pre-outbreak signals
with an average of 5-week window lead prior to the cata-
strophic transition into HFMD outbreaks. The study on
the dynamical changes of clinic visits in local networks
reveals the dynamic or landscapes of HFMD transmis-
sion at the network level. As the algorithm shown in
Methods section, the L-DNM is easy to implement and
very flexible. It is therefore of great potential in public
real-time surveillance for epidemic diseases.
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