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Abstract 

Background Gonorrhea has long been a serious public health problem in mainland China that requires atten-
tion, modeling to describe and predict its prevalence patterns can help the government to develop more scientific 
interventions.

Methods Time series (TS) data of the gonorrhea incidence in China from January 2004 to August 2022 were col-
lected, with the incidence data from September 2021 to August 2022 as the validation. The seasonal autoregressive 
integrated moving average (SARIMA) model, long short-term memory network (LSTM) model, and hybrid SARIMA-
LSTM model were used to simulate the data respectively, the model performance were evaluated by calculat-
ing the mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) 
of the training and validation sets of the models.

Results The Seasonal components after data decomposition showed an approximate bimodal distribution 
with a period of 12 months. The three models identified were SARIMA(1,1,1) (2,1,2)12, LSTM with 150 hidden units, 
and SARIMA-LSTM with 150 hidden units, the SARIMA-LSTM model fitted best in the training and validation sets, 
for the smallest MAPE, RMSE, and MPE.

Conclusions The overall incidence trend of gonorrhea in mainland China has been on the decline since 2004, 
with some periods exhibiting an upward trend. The incidence of gonorrhea displays a seasonal distribution, typi-
cally peaking in July and December each year. The SARIMA model, LSTM model, and SARIMA-LSTM model can all fit 
the monthly incidence time series data of gonorrhea in mainland China. However, in terms of predictive performance, 
the SARIMA-LSTM model outperforms the SARIMA and LSTM models, with the LSTM model surpassing the SARIMA 
model. This suggests that the SARIMA-LSTM model can serve as a preferred tool for time series analysis, providing 
evidence for the government to predict trends in gonorrhea incidence. The model’s predictions indicate that the inci-
dence of gonorrhea in mainland China will remain at a high level in 2024, necessitating that policymakers implement 
public health measures in advance to prevent the spread of the disease.
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Introduction
In the year 2020, more than 1 million sexually transmit-
ted infections (STIs) were acquired every day worldwide, 
about 22% of them were gonorrhea infections [1]. Gonor-
rhea is the trigger for many urinary diseases (e.g. pelvic 
inflammatory disease, ectopic pregnancy, maternal death 
maternal death, infertility, epididymitis, gonococcemia, 
and disseminated gonococcal infection) [2, 3]. In addi-
tion, it increases the risk of human immunodeficiency 
virus (HIV) acquisition [3].

In China, gonorrhea has become the second most 
prevalent STIs, after syphilis. Since the first gonorrhea 
case was reported in 1977 [4], it has been prevalent in 
China for 46  years and become a public health distress 
that requires attention. The gonorrhea incidence was 
9.06 cases per 100,000 population in 2021 [5], there is 
an increase of 20.96% compared with the incidence in 
2020 (7.49 cases per 100,000 population) [6]. Since the 
COVID-19 outbreak in 2019, the “zero-COVID” policy 
implemented by the Chinese government may have had 
an impact on the spread of many infectious diseases. 
With China’s withdrawal from the “zero-COVID” policy 
at the end of 2022, the epidemiological trends of STIs will 
get more attention. Because of the characteristics of the 
long incubation period of STIs, the insidious nature of 
the transmission, and the difficulty of complete cure, the 
surveillance of STIs is challenging.

By analyzing the epidemiologic trends of disease, poli-
cymakers can develop response plans earlier and more 
accurately. The role of mathematical models is to quan-
tify the internal patterns of TS data. Traditional ARIMA 
models were widely used in TS data analysis and fore-
casting, but one of the drawbacks is that it requires 
stationary data and does not fit well for non-linear TS 
data. Some studies have shown seasonal fluctuations in 
gonorrhea incidence [4, 7], the same pattern was found 
when we preprocessed the study samples, so a multipli-
cative seasonal ARIMA (SARIMA) model was needed. 
The machine learning (ML) theory and technology rap-
idly develop in the past several years. Similarly, ML was 
widely used to predict unknown TS data by analyzing 
historical data. Artificial neural networks (ANN) is one 
of the important algorithms for ML, ANN is a mathemat-
ical model with adaptive characteristics that simulate the 
structure and function of the biological neural network 
consisting of many neurons, which are interconnected 
by certain factors to form a powerful network for pro-
cessing information. Theoretically, the ML can fit any 
kind of TS data with a very small error by iterating. The 
LSTM model was first proposed in 1997 as an extension 
to the ANN, which solved the problem that traditional 
ANN "forget" the initial input in continuous iterations 
owing to its special neuronal structures. As a typical 

representative of Recurrent Neural Networks(RNN), 
LSTM models have been proven to have good non-linear 
fitting capabilities. Due to the cell structure of LSTM, 
the LSTM model can store and access information over 
a long period of time when dealing with data with long 
time spans, thus alleviating the problem of gradient van-
ishing or explosion. Therefore, we attempt to use the 
LSTM method to establish a gonorrhea model. Since the 
hybrid ARIMA-ANN models can not only accurately 
track the stable long-term trends and seasonal charac-
teristics of the original observed data, but also capture 
the nonlinear characteristics and stochastic fluctuations 
of the observations well, it often outperforms the single 
ARIMA model or ANN models in terms of simulation 
performance and prediction performance in practical 
applications, as demonstrated in many prediction stud-
ies of infectious diseases [8–10]. Therefore, we used the 
SARIMA, LSTM, and hybrid SARIMA-LSTM models to 
analyze the monthly time series data of gonorrhea infec-
tions in China from January 2004 to July 2022, and made 
predictions based on the model fitting results.

Methods
TS data collection
The monthly number of newly reported cases of gonor-
rhea from January 2004 to August 2020 was extracted 
from the reports of “Overview of the national epidemic of 
notifiable infectious diseases" published by the Bureau for 
Disease Control and Prevention of China National Health 
Commission every month (available from the website: 
http:// www. nhc. gov. cn/ jkj/ new_ index. shtml).

The data published by the government were extracted 
from the routine reporting system for notifiable infec-
tious diseases covering 31 provinces in mainland China, 
which was established by the Chinese government in the 
1950s and switched from paper-based reporting to web-
based reporting in 2003 [11]. The case information of 
notifiable infectious diseases was timely reported from 
local hospitals and community health service centers 
throughout the country and was reviewed and confirmed 
by local Centers for Disease Control and Prevention 
(CDC) after confirmatory tests [11, 12]. The reports were 
updated to August 2022, therefore, data after this date are 
not available at present, a total of N = 224 observations 
spanning 18 years were included in the study.

TS decomposition
TS decomposition means separating a TS into several 
distinct components, a deterministic and nonseasonal 
secular trend component  (Tt), a deterministic seasonal 
component with known periodicity  (St), and a stochas-
tic irregular component  (It). After investigating the TS 
data by scrutiny of the recorded data plotted over time, 

http://www.nhc.gov.cn/jkj/new_index.shtml
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we performed an additive decomposition of TS, which 
is expressed as Yt = Tt + St + It. We confirmed the  Tt by 
using a smooth weighted 13-term moving average fil-
ter given by:

q < t < N – q, and q = 6 for monthly data, because symmet-
ric moving averages have an odd number of terms, a rea-
sonable choice for the weights is kj = 1/4q for j =  ± q, and 
kj = 1/2q otherwise. By the transformation of TS, the first 
and last q observations were lost, so we repeated the first 
and last smoothed values six times. To calculate the  St, 
we used the seasonality moving average filter, expressed 
as:

For s = 12, k = 1,…,12, and s̃k = s̃k−s for k > s. Using 
ŝk to constrain the seasonality component to fluctuate 
around zero.

In time series trend analysis, the Mann–Kendall test 
is a widely used non-parametric test method for ana-
lyzing trend changes in a time series. The Mann–Ken-
dall test does not require the sample to follow a certain 
distribution, is not affected by a few outliers. In a two-
sided trend test with a specified test level of α = 0.05, 
the presence of a significant increasing or decreasing 
trend in the sequence can be inferred if the value of |z|
> 1.96. A z-value greater than zero signifies an upward 
trend, while a z-value less than zero indicates a down-
ward trend.

Modeling of the SARIMA
Mathematical equations of the SARIMA model
The SARIMA model is always defined as SARIMA (p, d, 
q) (P, D, Q)s, where p, d, and q represent non-seasonal 
components, and P, D, and Q represent seasonal com-
ponents. p and P are degrees of non-seasonal and sea-
sonal autoregressive, respectively. d and D are degrees 
of non-seasonal and seasonal differencing, respectively. 
q and Q are degrees of the non-seasonal and seasonal 
moving average, respectively, and s denote the sampling 
period.

The SARIMA model polynomial with the lag operator 
can be expressed as:

yt =

q

j=−q

kj yt+j

s̃k = 1
nk

(
N/s

)
−1∑

j=1

xk+js

s = 1
S

s∑
k=1

s̃k

ŝk = s̃k − s

εt denotes a sequence of uncorrelated random variables 
from a defined probability distribution with a mean zero.

SARIMA model selection and parameters estimation
As long-term trends and seasonal fluctuations were 
observed in the TS, data transformations were nec-
essary. After successively differencing to the TS, we 
tested the stability of the differenced TS (TS’) by an 
Augmented Dickey-Fuller (ADF) test. Then we con-
ducted the Ljung-Box Q test on TS’ to determine 
whether the sequence is a white noise sequence. The 
sample autocorrelation function (ACF) and partial 
autocorrelation function (PACF) are useful qualita-
tive tools to assess the presence of autocorrelation at 
individual lags. The Ljung-Box Q-test is a more quan-
titative way to test for autocorrelation at multiple lags 
jointly. The null hypothesis for this test is that the first 
m autocorrelations are jointly zero. By plotting the ACF 
and PACF of TS’, we explored the lags of p, q, P, and 
Q of the SARIMA model, the best-fitting model was 
determined by minimizing Akaike information criteria 
(AIC) and Bayesian information criteria (BIC) among 
all reasonable model combinations. Basically, informa-
tion criteria are likelihood-based measures of model fit 
that include a penalty for complexity (specifically, the 
number of parameters). Different information criteria 
are distinguished by the form of the penalty, and can 
prefer different models. Let logL(θ̂  ) denote the value 
of the maximized loglikelihood objective function for a 
model with k parameters fit to N data points. The AIC 
and BIC for a specific model are given by the formulas: 
-2logL(θ̂ ) + 2  k and − 2logL(θ̂ ) + klog(N), respectively, 
The AIC compares models from the perspective of 
information entropy, as measured by Kullback–Leibler 
divergence. The BIC compares models from the per-
spective of decision theory, as measured by expected 
loss. In comparing AIC and BIC values among multi-
ple models, lower criterion values are preferred.Subse-
quently, a method of maximum likelihood is employed 
to estimate the parameters of the model. The statistical 
significance of a parameter is ascertained based on the 
t-test statistic and the corresponding p-value of each 
parameter.

ϕ(L)�(L)(1− L)d(1− Ls)Dyt = θ(L)�(L)εt + constant

Liyt = yt−i

�d = (1− L)d

�s = (1− Ls)

ϕ(L) = 1− φ1L− · · · − φpL
p

�(L) = 1−�sL− · · · − φPsL
Ps

θ(L) = 1+ θ1L+ · · · + θqL
q

�(L) = 1+�sL+ · · · +�QsL
Qs
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Goodness‑of‑fit checks of the SARIMA model
The mean absolute percentage error (MAPE), root 
mean square error (RMSE), and mean absolute error 
(MAE) were used as indicators for evaluating the good-
ness-of-fit of the model, which were given by:

Where xt and yt denote the observation series and fit-
ting series, respectively. These three metrics are com-
monly used to assess the goodness-of-fit of models, 
reflecting the discrepancy between the actual and pre-
dicted values. Therefore, the smaller the values of these 
three indicators, the smaller the error in the model fit. 
Specifically, MAPE represents the percentage of the dif-
ference between the fitted value and the actual value 
relative to the actual value. This not only considers the 
difference between the fitted value and the actual value 
but also takes into account the ratio of the difference 
to the actual value, thus enabling an assessment of the 
quality of the model. The advantage of the RMSE met-
ric is that its value is consistent with the order of mag-
nitude of the original data, and its interpretation can 
be expressed as the average difference between the fit-
ted value and the actual value. MAE denotes the mean 
absolute deviation between the fitted and actual values, 
which also reflects the fitting effect of the model.

We conducted a Ljung-Box Q-test, along with the 
ACF and PACF plots on the residual series to check the 
autocorrelation. Finally, we performed normality diag-
nostics by plotting the histogram of standard residuals 
and Quantile–Quantile (QQ) plot of residuals.

To test the effectiveness of the model prediction, we used 
the method of setting up a training set and a test set to ver-
ify the prediction accuracy. We used the last 12  months’ 
(September 2021 to August 2022) data of the time series 
as the validation, using the data before September 2021 
for modeling, and then performing the prediction with a 
time step of 12, and calculating the goodness-of-fit evalu-
ation indicators for the validation set and the training set, 
respectively. The process of constructing and simulating 
the SARIMA model is shown in Fig. 1.

Modeling of the LSTM
LSTM network architecture
LSTM is a kind of recurrent neural network (RNN) with 
a special structure [13]. An LSTM network consists of 

MAPE = 100%
N

N∑
t=1

|xt−yt |
xt

RMSE =

√
1
N

N∑
t=1

(
xt − yt

)2

MAE = 1
N

N∑
t=1

∣∣xt − yt
∣∣

a sequence input layer, an LSTM layer, and an output 
layer. Different from the traditional RNN, there is a cell 
state in the LSTM neurons, which can effectively retain 
long-term memory and solve the problem of gradi-
ent disappearance. The cell state contains information 
learned from the previous time steps. At each time step, 
the layer adds information to or removes information 
from the cell state, all these updates are controlled by 
gates. There are three kinds of gates in the LSTM layer, 
input gate (i), forget gate (f), and output gate (o), Fig. 1 
illustrates the flow of data at time step t and shows how 
the gates forget, update, and output the cell and hidden 
states. The cell structure of LSTM are shown in Fig. 2.

The following formulas describe the components at 
time step t:

Where W, b denote the matrices of input weight and 
bias, respectively.

TS data normalization
Data normalization can improve the training efficiency 
and generalization ability of the model, and accelerate the 
speed of gradient descent to obtain the optimal solution. 
A Z-Score method was used to normalize the sample 
data, which was given by: TS* = (TS − μ) / σ, where μ and 
σ denote the sample mean and standard deviation.

Define LSTM network architecture and training
To prevent the gradients from exploding, set the gra-
dient threshold to 1. The number of hidden units, the 
times of maximum iterations, and the learning rate of 
the LSTM network both influenced the fitting accuracy 
of the models. To prevent overfitting or underfitting, 
under the condition that the initial learning rate was set 
to 0.005, we have experimented with various combina-
tions of the number of hidden units, and the number of 
maximum iterations, and took the RMSE as the indica-
tor to evaluate the fitting accuracy. To automatically 
drop the learning rate during training, using a piece-
wise learn rate schedule, multiply the initial learning 
rate by a drop factor of 0.2 after half of the maximum 
iterations. We used the "Adam" solver to update the net-
work parameters by taking small steps in the direction 
of the negative gradient of the loss function. The solv-
ers update the parameters using a subset of the data at 
each step, each parameter update is called an iteration. 

ft = σ
(
Wf · [St−1,Xt ]+ bf

)

it = σ(Wi · [St−1,Xt ]+ bi)
gt = tanh

(
Wg · [St−1,Xt ]+ bg

)

ot = σ(Wo · [St−1,Xt ]+ bo)
Ct = ft ⊗ Ct−1 + it ⊗ gt
St = Ot ⊗ tanh(Ct)
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Fig. 1 Flowchart of SARIMA model construction and simulation
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The current mainstream method for determining the 
LSTM structure is trial-by-error. We establish the opti-
mal model structure based on the similarity degree of 
the time series plots of the fitted and actual values, along 
with the RMSE values. We conduct experiments using 
10, 50, 100, 150, and 200 hidden neurons respectively, 
executing iterations in increments of 50 from 50 to 500. 
During this process, we calculate the RMSE of the model 
fit for each combination and perform three training runs 
for each combination to compute the average RMSE 
value. The criterion for selecting the model structure is 
the minimum value of the average RMSE.

Goodness‑of‑fit checks of the LSTM model
As mentioned before, to ensure the accuracy of the 
model fit, we trained the model using the training set 
and validate the accuracy of the model prediction using 
the validation set. We calculated the MAPE, RMSE, and 
MAE separately for the training and validation sets for 
evaluating the goodness-of-fit of the model, which were 
shown in Goodness-of-fit checks of the SARIMA model.

Forecasting future time steps
To forecast the data of multiple time steps in the future, 
predict time steps one at a time and update the network 
state at each prediction. For each prediction, use the 
previous prediction as input to the function. To fore-
cast the values of future time steps of a sequence, specify 
the responses to be the training sequences with values 
shifted by one-time step. That is, at each time step of the 
input sequence, the LSTM network learns to predict the 
value of the next time step [14]. The predictors are the 

training sequences without the final time step. So the data 
from January 2004 to July 2022 of TS* were divided into 
the input sequence, and the data from February 2004 to 
August 2022 of TS* were divided into the output sequence.

Construction of the hybrid SARIMA‑LSTM model
The SARIMA model can fit seasonal fluctuations well, 
but the fitting accuracy is poor for nonlinear components 
of TS data, while the LSTM model can compensate for 
this deficiency well. Since real-time series data might not 
have a strict cyclical fluctuation pattern, another prob-
lem is that the mandatory fitting of seasonal fluctuations 
using a single LSTM model over a longer period increases 
the risk of overfitting, then combining the two models 
into a hybrid SARIMA-LSTM model can solve the accu-
racy problem of nonlinear fitting and simulate seasonal 
fluctuations at the same time. The route of designing the 
SARIMA-LSTM model is to use the fitting result of the 
SARIMA model as the input of LSTM and real TS data 
as the output, simulate the output series of the SARIMA 
model using the architecture and parameters of the 
LSTM model, and then update the network with real TS 
data. The goodness-of-fit test and implementation of the 
prediction of the SARIMA-LSTM model has shown in 
the Goodness-of-fit checks of the SARIMA model  and 
Goodness-of-fit checks of the LSTM model.

Softwares and significant level
Matlab R2020a (MathWorks Corporation) was used to 
perform the models involved in the study, and Microsoft 
Office 2013 (Microsoft Corporation) for data collection 
and processing. Statistical significance level was set at a 

Fig. 2 The cell structure of LSTM. The arrow indicates the data flow, where x, s, c, f, i, g, and o denote the input, output, cell state, forget gate, 
input gate, cell candidate, and output gate in time step t, respectively. σ and tanh denote the sigmoid activation function and the hyperbolic 
tangent function, which maps the data to (0,1) and (-1,1), respectively. ⊗ , ⊕ are vector operators which represent element-wise multiplication 
and element-wise addition, respectively
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two-sided p < 0.05. In statistics, the p-value is a measure 
used to evaluate the strength of evidence against a null 
hypothesis. It represents the probability of observing a test 
statistic as extreme or more extreme than the one actually 
observed, assuming that the null hypothesis is true.

Results
Trends and seasonality of the TS
From January 2004 to August 2022, the average number of 
cases per month was 10,683. The maximum and minimum 
monthly incidence occurred in July 2004 and February 
2020, with 21, 961 and 3, 524 cases, respectively. As shown 
in Fig.  3A, The long-term trend of gonorrhea infections 
can be approximated as a combination of the alphabets "u" 
and "m". Upon conducting the Mann–Kendall trend anal-
ysis, the trend test z-values for the number of cases were 
found to be -11.636, 4.959, -3.496, and 0.142 for the periods 
of January 2004 to February 2015, March 2015 to August 
2017, September 2017 to February 2020, and March 2020 
to August 2022, respectively. Based on the test level of 
α = 0.05, it can be inferred that the trend in the incidence of 
gonorrhea cases exhibits an initial decline, followed by an 
increase, and subsequently another decline. Over the entire 

research period, the trend test z-value is -5.772, signify-
ing a general decrease in the overall trend.In detail, from 
January 2004 to August 2017, the trend shows a decline 
followed by an increase, from September 2017 to February 
2022, it shows a similar trend. By decomposing the data, a 
periodicity of 12 was found, and the stable seasonal com-
ponent curves showed a bimodal distribution of the num-
ber of cases within a period, with peak months of July and 
December, respectively (Fig. 3B).

SARIMA model selection
We performed the ADF test on the differentially trans-
formed TS data, and the results showed that the differen-
tial series were stationary (t = -17.312, p < 0.05). According 
to the ACF and PACF plots, the order of p, q was tem-
porarily set as 1 or 2, and P was set as 2 (Fig. 4). By com-
paring the AIC and BIC of all alternative models (Table 1), 
the SARIMA model was finally determined as SARIMA 
(1, 1, 1) (2, 1, 2) 12. The constant was not included, because 
the hypothesis test results for the constant were not statis-
tically significant (t = 0.086, p = 0.931). The model can be 
expressed as a polynomial of:

(1−ϕ1L)(1−�12L
12−�24L

24)(1− L)
(
1− L12

)
yt = (1+ θ1L)

(
1+�12L

12 +�24L
24
)
εt

Fig. 3 Monthly TS data of gonorrhea infections from JAN 2004 to AUG 2022 and the TS decomposition. The blue curve in A represents 
the incidence time series, the red curve represents the long-term trend, the red curve in B represents the time series without the seasonal 
component (both long-term trend and stochastic component exist), and the blue curve in B represents the stable seasonal component 
with periodicity 12
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Where the results of the estimation of the parameters 
were shown in Table 2.

Selection of LSTM parameter combinations
In order to identify the optimal parameter combina-
tion, we tested various combinations of hidden units and 
iteration numbers, calculating the goodness of fit (rep-
resented by RMSE) for the LSTM model under different 
conditions. We initially attempted to use 10 neurons for 
50 iterations, but the model’s fitted values did not align 
well with the actual data curve(Fig. 5). Consequently, we 
increased the number of iterations to 100, but the model 
still failed to fit the data adequately. We then tested 150, 

200, 250, 300, 350, 400, 450, and 500 iterations, but the 
fitting curves remained unsatisfactory despite the mod-
el’s low RMSE values. We subsequently increased the 
number of neurons to 50 and performed 50, …, 500 itera-
tions, yielding results similar to those of the model with 
10 neurons. Therefore, we experimented with 150 and 
200 neurons for 50, …, 500 iterations and calculated the 
goodness of fit for each model.

Through various parameter combinations and multi-
ple training and validation sessions, we ultimately deter-
mined that the optimal number of hidden units was 150, 
with a maximum of 150 iterations, as shown in Table 3. 
When the number of hidden units was 10 or 50, or the 
number of iterations was less than 50, we observed 
underfitting in the model fitting curves, so we did not 
proceed to second and third training rounds. However, 
when the number of iterations exceeded 300, overfit-
ting typically occurred, as evidenced by the increased 

Fig. 4 ACF and PACF of the differenced TS. A and B denote the ACF and PACF of the non-seasonal differential series. C and D denote the ACF 
and PACF of the seasonal differential series, respectively. The red stem plots represent the sample ACF and PACF values at different lags, and the blue 
dashed lines indicate the ± 2 times standard deviation interval

Table 1 Alternative SARIMA models and the AIC and BIC values

ID Models (S = 12) AIC BIC

1 SARIMA(1,1,1) (2,1,0) 3591.00 3606.80

2 SARIMA(1,1,1) (2,1,1) 3563.80 3582.80

3 SARIMA(1,1,1) (2,1,2) 3543.80 3569.00
4 SARIMA(1,1,2) (2,1,0) 3582.00 3600.90

5 SARIMA(1,1,2) (2,1,1) 3562.10 3584.20

6 SARIMA(1,1,2) (2,1,2) 3563.80 3582.80

7 SARIMA(2,1,1) (2,1,0) 3581.40 3600.30

8 SARIMA(2,1,1) (2,1,1) 3562.80 3584.90

9 SARIMA(2,1,1) (2,1,2) 3563.60 3588.80

10 SARIMA(2,1,2) (2,1,0) 3582.80 3604.90

11 SARIMA(2,1,2) (2,1,1) 3562.30 3587.60

12 SARIMA(2,1,2) (2,1,2) 3545.30 3573.70

Table 2 SARIMA(1, 1, 1) (2, 1, 2)12 parameters estimation

* Under the premise of a test level α = 0.05, the hypothesis test of the parameters 
is statistically significant

Parameters Value Standard error t‑statistic p

φ1 -0.251 0.087 -2.882 0.004*

Φ12 -1.000 0.057 -17.462  < 0.001*

Φ24 -0.215 0.059 -3.626  < 0.001*

θ1 -0.218 0.101 -2.165 0.030*

Θ12 0.297 0.090 3.300 0.001*

Θ24 -0.448 0.087 -5.116  < 0.001*
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RMSE values. To minimize the impact of random fac-
tors, we trained the candidate models three times each, 
calculating the average RMSE value for each model and 
selecting the parameter combination with the small-
est average RMSE for model establishment. As LSTM 
iterations yield different correction values, the chosen 
parameter combination should provide a general rep-
resentation of the model’s fitting capabilities. Further-
more, considering time cost and computational power, 
we abandoned the approach of using fewer neurons 
with more iterations when a greater number of neurons 
and fewer iterations could accurately fit the data.

Residuals diagnostics of SARIMA model
We performed the Ljung-Box Q-Test on the residual 
series, and the test results (χ2 = 23.156, p = 0.281) indi-
cates that the residual series is stationary and does not 
exhibit autocorrelation. However, between 2004 and 
2009, the oscillation of the residuals fitted by the three 
models around zero is larger compared to other peri-
ods (Fig. 7).

The standardized residuals were obtained by nor-
malized transformation of the residuals, and the histo-
gram of the frequency distribution of the standardized 

residuals was plotted, and the results show that the 
frequency plot of the standardized residuals indicates 
a zero-centered symmetric, approximately normal dis-
tribution. The residuals QQ plots also show similar 
characteristics.

The residuals ACF and PACF plots show that most of 
the residuals are within the ± 2 standard deviation inter-
val, but the residuals ACF and PACF exhibit significant 
autocorrelation at lag 7 (Fig. 6).

Comparison of SARIMA, LSTM, and SARIMA‑LSTM model 
fitting
The SARIMA, LSTM, and SARIMA-LSTM models 
are used to fit the sample data, and the fitting plots are 
shown in Fig.  7. The goodness-of-fit of the SARIMA, 
LSTM, and SARIMA-LSTM models for the TS data can 
be assessed based on the values of MAPE, RMSE, and 
MAE, as shown in Table 4. Among the three models, the 
SARIMA-LSTM model demonstrates a superior over-
all fit, with MAPE, RMSE, and MAE values of 7.10%, 
900.237, and 626.965, respectively. Furthermore, the pre-
dictive performance of the SARIMA-LSTM model sur-
passes that of the other two models, exhibiting MAPE, 
RMSE, and MAE values of 5.86%, 737.967, and 546.297, 
respectively, for the validation set.

Fig. 5 Comparison of fitted values from various underfitted LSTM models with actual data. A-D correspond to scenarios of 10 hidden units with 50 
iterations, 10 hidden units with 500 iterations, 50 hidden units with 50 iterations, and 50 hidden units with 500 iterations, respectively. Here, the blue 
curve signifies actual incidence data, while the red curve denotes LSTM model-fitted data
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Table 3 LSTM model fitting accuracy for different combinations of hidden units and iterations

ID Num Hidden Units Iterations RMSE1 RMSE2 RMSE3 MRMSEa

1 10 50 1400.40 - - -

2 10 100 781.27 - - -

3 10 150 805.84 - - -

4 10 200 788.77 - - -

5 10 250 840.84 - - -

6 10 300 875.89 - - -

7 10 350 860.04 - - -

8 10 400 920.32 - - -

9 10 450 1038.70 - - -

10 10 500 880.61 - - -

11 50 50 738.01 - - -

12 50 100 824.52 - - -

13 50 150 936.04 - - -

14 50 200 973.73 - - -

15 50 250 1015.70 - - -

16 50 300 1119.60 - - -

17 50 350 1260.40 - - -

18 50 400 1257.50 - - -

19 50 450 1242.40 - - -

20 50 500 1422.60 - - -

21 100 50 839.63 - - -

22 100 100 879.49 1301.90 1283.10 1154.30

23 100 150 1141.20 1160.10 1135.80 1145.70

24 100 200 1279.20 1080.10 1231.60 1196.97

25 100 250 1295.20 1359.20 1378.90 1344.43

26 100 300 1359.10 1287.00 1378.90 1341.67

27 100 350 1307.40 1329.40 1436.50 1357.77

28 100 400 1321.50 1421.30 1373.90 1372.23

29 100 450 1395.20 1448.60 1396.90 1413.57

30 100 500 1455.70 1445.20 1451.20 1450.70

31 150 50 895.45 - - -

32 150 100 1121.00 1102.90 2036.70 1419.66

33 150 150 1090.00 1269.60 950.66 1103.42

34 150 200 1200.80 1287.50 1381.20 1289.83

35 150 250 1279.80 1253.80 1359.20 1297.60

36 150 300 1326.80 1288.90 1383.80 1333.17

37 150 350 1349.20 1432.50 1412.10 1397.93

38 150 400 1401.30 1454.00 1409.00 1421.43

39 150 450 1436.00 1402.30 1388.10 1408.80

40 150 500 1425.50 1439.00 1433.40 1432.63

41 200 50 972.46 - - -

42 200 100 1125.70 1710.90 845.80 1226.66

43 200 150 1307.50 1175.60 1069.30 1184.13

44 200 200 1320.70 1298.30 1353.20 1324.07

45 200 250 1345.30 1363.00 1371.50 1359.93

46 200 300 1400.70 1353.10 1400.90 1384.90

47 200 350 1335.00 1390.00 1396.90 1373.97

48 200 400 1361.70 1346.20 1440.10 1382.67

49 200 450 1410.80 1448.90 1426.80 1428.83

50 200 500 1477.70 1431.10 1480.90 1463.23

a denotes the average of RMSE1, RMSE2, RMSE3. – means the training process was not implemented due to underfitting
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Forecasting with SARIMA, LSTM, and SARIMA‑LSTM models
We updated the SARIMA, LSTM, and SARIMA-LSTM 
models with all time series data before predicting future 

time steps to ensure the accuracy of the predictions. We 
used the updated SARIMA, LSTM, and SARIMA-LSTM 
models to predict the monthly incidence of gonorrhea for 

Fig. 6 SARIMA model residuals normality and autocorrelation diagnostics. A shows the frequency distribution of standardized residuals using 
a histogram. B is the QQ plots of residuals of the SARIMA model, and the red dashed line represents the standard normal distribution. C and D 
is ACF and PACF of residuals, respectively. The stem plots represent the sample ACF and PACF values at different lags, and the blue dashed lines 
indicate the ± 2 times standard deviation interval

Fig. 7 TS data fitting and validation by using SARIMA, LSTM, and SARIMA-LSTM models. In Fig. 7, the blue curves depicted in panels A, B and C 
represent the actual number of cases in China from January 2004 to August 2021. The red curves in panels A, B, and C correspond to the cases 
fitted by the SARIMA, LSTM, and SARIMA-LSTM models, respectively. The yellow curves in panels A, B and C correspond to the cases predicted 
by the SARIMA, LSTM, and SARIMA-LSTM models, respectively. Panels D, E and F display the simulation and prediction residuals for the SARIMA, 
LSTM, and SARIMA-LSTM models, represented by the blue and yellow curves, respectively

Table 4 Evaluation of goodness-of-fit of SARIMA, LSTM, and SARIMA-LSTM models

Models Fitting Validation

MAPE(%) RMSE MAE MAPE(%) RMSE MAE

SARIMA 6.97% 995.056 667.858 14.38% 1635.702 1290.466

LSTM 7.10% 992.593 709.762 6.77% 848.536 636.020

SARIMA-LSTM 7.10% 903.074 626.965 5.86% 737.967 546.297
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the next 24 months (September 2022 to August 2024), the 
results showed that the number of monthly incidences 
and trends predicted by SARIMA and LSTM model were 
relatively similar, and the number of monthly incidences 
did not exceed 10,000 during the prediction period. In 
each month of the forecast period, the predictions of the 
SARIMA-LSTM model are larger than those of the other 
two models. The results of the three models are similar 
for trend estimates, with a peak incidence in the winter of 
2023 (Fig. 8).

Discussion
According to our results, there are 118.9 million new gon-
orrhea infections annually from 2019 to 2021 in mainland 
China, 44.2% higher than the world level, according to the 
WHO reports, there are approximately 82.4 million new 
gonorrhea infections annually [15]. We observed a sharp 
decline in the number of reported gonorrhea cases in 
early 2020, especially in February 2020, so the models we 
used were not successful in fitting the data at this point. 
Similar characteristics were observed for several notifi-
able STIs other than gonorrhea, such as AIDS and syphilis 
[12], probably because the Chinese government took the 
strategy of lockdown to response the COVID-19 out-
break, the movement of the population was strictly con-
trolled, most social activities in China have almost come 
to a standstill, and it was the Chinese New Year, when 
most public health practitioners were on vacation, result-
ing in a temporary delay in the surveillance and detection.

The seasonality of gonorrhea was first reported in the 
United States in 1971, with peaks in the summer and 

early autumn [7], and our seasonal diagnosis showed that 
the rates of gonorrhea had two peaks in the year, on aver-
age, in July and December, which is similar to the results 
of another study [16]. One study showed the risk of gon-
orrhea infection was highest at the temperature range of 
6–11  °C [4], as the meteorological factors contribute to 
less than 20% [4] of the variation in infection transmis-
sion, so another possible reason for the seasonal fluc-
tuations in gonorrhea is the frequency of sexual activity, 
which is consistent with the changing patterns of sexually 
transmitted diseases in the population [17].

SARIMA and ANN models have been successfully used 
to fit and predict time series data in a variety of fields 
[18–22]. The SARIMA model can fit seasonal fluctua-
tions well, but the fitting accuracy is poor for nonlinear 
components of TS data [23], while the LSTM model 
can compensate for this deficiency well, but another 
problem is that the mandatory fitting of seasonal fluc-
tuations using a single LSTM model over a longer period 
increases the risk of overfitting, so a hybrid SARIMA-
LSTM model was used to solve the accuracy problem of 
nonlinear fitting and simulate seasonal fluctuations at the 
same time [24]. In the construction of the LSTM model, 
we initially utilized 10 hidden units and performed itera-
tions from 50 to 500. Despite the low RMSE value, the 
curve fitting was suboptimal, leading us to hypothesize 
that the limited number of neurons restricted the mod-
el’s ability to learn the seasonal variations of the original 
data. Consequently, we trialed 100 neurons, and found 
that with over 150 iterations, the model could effectively 
fit the original data. However, as the number of iterations 

Fig. 8 Prediction results from September 2022 to August 2024 of SARIMA, LSTM, and SARIMA-LSTM models. The light blue area represents 
the forecast period, and the red, yellow, and purple dashed curves indicate the prediction results of SARIMA, LSTM, and SARIMA-LSTM models, 
respectively. The red, yellow, and purple curves indicate the simulating results of the updated SARIMA, LSTM, and SARIMA-LSTM models using all 
observed data
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exceeded 150, the RMSE value consistently increased, 
implying a boundary at 150 iterations and suggesting 
that 100 neurons were sufficient for learning the data’s 
hidden features. We then tested the model with 150 and 
200 neurons, and concluded that the LSTM model could 
capture the original data information with 150 itera-
tions, thus rendering further iterations unnecessary. The 
RMSE value also supported this finding, as it did not 
significantly differ between 150 and 200 iterations but 
increased gradually afterwards, indicating an overfitting 
phenomenon. In summary, we determined that an LSTM 
model with 100 or 150 neurons and 150 or 200 iterations 
could effectively capture the information in the original 
data. We repeated the process three times and selected 
the model with the smallest average RMSE value, which 
consisted of 150 neurons and 150 iterations. Despite the 
theoretical possibility of achieving the same results with 
fewer hidden neurons and more iterations, employing 
more neurons allowed for quicker information capture, 
eliminating the need for redundant iterations and sav-
ing both time and computational resources. The fitting 
results of the three models also illustrate this point, and 
the SARIMA-LSTM model has the best goodness-of-fit, 
which indicates a good combination of the advantages 
of the other two models. When using the validation set 
to test the predictive performance of the models, the 
goodness-of-fit evaluation metrics in the validation set 
showed that the SARIMA model did not meet expecta-
tions, though the SARIMA model performed similarly 
to other models in the training set. And the SARIMA-
LSTM model outperforms the LSTM model. In terms 
of predictive power, predictive models are considered 
perfect when the MAPE value is less than 5%. Models 
with MAPE values in the range of 5%-10% are consid-
ered high-precision models; models with MAPE values 
in the range of 10%-20% are considered good models 
[25]. In the validation set, both the LSTM and SARIMA-
LSTM models have MAPE values between 5 and 10%, 
meeting the criteria for high-precision models, while 
the SARIMA model is only considered a good model, 
as its goodness-of-fit metric MAPE value is larger than 
10%. The SARIMA-LSTM model’s RMSE value for pre-
dicting the validation set is 737.967, which can be inter-
preted as the average difference between the predicted 
value and the actual value being 737.967, a reduction of 
54.88% and 13.03% compared to the SARIMA and LSTM 
models, respectively. The magnitude of the MAE value 
reflects that the average absolute error of the SARIMA-
LSTM model is 57.66% and 14.10% lower than that of the 
SARIMA and LSTM models, respectively. The advantage 
of the hybrid SARIMA-LSTM model is that it is more 
accurate for both long-term trends and stochastic com-
ponents, because one of the steps of SARIMA-LSTM 

modeling is to simulate the output values of the SARIMA 
model and to be able to correct the model parameters 
through continuous iterations to reduce the error, the 
output of the SARIMA model has less variance com-
pared to the original observations, so the learning cost 
of the SARIMA-LSTM model is smaller than that of the 
LSTM, and the fitted results will be more stable [26]. 
In other words, the SARIMA-LSTM model fits a more 
regular time series, thereby mitigating the impact of ran-
dom fluctuations present in the original time series on 
the results. While our time series sample contains sea-
sonality, it is not strictly seasonal due to the inclusion 
of non-linear random fluctuations. The SARIMA model 
can simplify this pattern into a pure seasonal fluctuation, 
a task that the LSTM model is incapable of, which may 
account for the latter’s subpar fit to the seasonal regu-
larities in the original data. The SARIMA-LSTM model 
effectively overcomes this shortcoming, thus exhibiting 
superior goodness of fit and predictive performance.

The SARIMA and LSTM models have similar good-
ness-of-fit evaluation metrics, and the prediction results 
are close, the SARIMA-LSTM model has larger predic-
tion results than the other two models, the reason may be 
the SARIMA-LSTM model is a SARIMA model nested 
in the LSTM model, and its neuron structure is the same 
as that of the LSTM model, and the prediction process 
is carried out in the same way as the LSTM model, both 
using the previous value to predict the next predicted one 
[23], so the predicted value relies heavily on the fitted 
values. Moreover, we discovered that during January and 
February 2020, the fitted values of the SARIMA-LSTM 
model were higher than those of the other two models. 
This period saw actual data being potentially smaller due 
to lockdown measures implemented in China, which 
means that the SARIMA-LSTM model was closer to real-
ity. This phenomenon reflects the greater flexibility of the 
hybrid SARIMA-LSTM model. However, considering 
that China has adjusted its “Zero-COVID” strategy at the 
end of 2022 by adopting only non-pharmaceutical inter-
ventions such as wearing masks and no more lockdowns, 
which will lead to an increase in population movement, 
the intensity of gonorrhea prevalence may increase as a 
result.In 2009, the Chinese government launched a new 
round of healthcare reform, and the “National Basic Pub-
lic Health Service Program” was published, meanwhile, 
reporting and handling of infectious diseases as well as 
health supervision is also included [27]. The Chinese 
government has increased education on STIs, includ-
ing gonorrhea, and people are paying more attention to 
the prevention of these diseases and have more access 
to knowledge about them, which has slowed down the 
spread of gonorrhea to some extent. But apparently, 
government propaganda is not enough, because sex is 
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a taboo subject in traditional Chinese culture, and peo-
ple rarely talk about it publicly. Parents rarely give their 
children the right advice in this regard. Sex education in 
schools is also not adequate for primary and secondary 
schools, leading to a lack of or even wrong perceptions 
of sexuality among young people. Timely detection and 
effective treatment can prevent further transmission of 
gonorrhea. However, the availability of effective treat-
ment is being threatened as gonorrhea bacteria have suc-
cessively acquired resistance to each of the antimicrobial 
agents used for treatment [28]. Emerging resistance to 
cephalosporins and macrolides and a dwindling pipeline 
of antimicrobial drug development threaten to under-
mine gonorrhea control and pose an even greater man-
agement challenge.

Admittedly, this study has several limitations. First, 
although the sample data were acquired from the official 
health administration in China, they were reported and 
aggregated by regional healthcare institutions at all lev-
els, and between December 2019 and December 2022, 
the Chinese government has taken strict public health 
measures in response to the COVID-19 outbreaks, which 
could lead to a decrease in the willingness of gonor-
rhea patients to seek medical care and reduced access to 
treatment, so the data may be subject to reporting bias. 
Second, although the LSTM model has high fitting accu-
racy, the training progress and parameter optimization 
of the model requires a lot of time because of the com-
plex structure of the LSTM model. The LSTM model also 
has some optimization algorithms [13], but they are not 
used in this study. Third, the time series model primarily 
serves as a tool for short-term forecasting, with its accu-
racy decreasing in the context of long-term predictions. It 
is crucial to acknowledge that for unexpected and abrupt 
’black swan’ events, time series models may not ensure 
precise forecasts, given their reliance on historical data 
analysis for future projections. Consequently, regular 
data updates are required to optimize the model’s perfor-
mance. Finally, no theoretical guidance can be adopted to 
identify the optimum number of hidden units, feedback 
delays and other key parameters during the establishment 
of ANN models [26]., Determining the optimal model 
may necessitate substantial trial-and-error, thereby ren-
dering the modeling process intricate and laborious.

Conclusions
The overall incidence trend of gonorrhea in mainland 
China has been on the decline since 2004, with some 
periods exhibiting an upward trend. The incidence of 
gonorrhea displays a seasonal distribution, typically 

peaking in July and December each year. The SARIMA 
model, LSTM model, and SARIMA-LSTM model can 
all fit the monthly incidence time series data of gonor-
rhea in mainland China. However, in terms of predictive 
performance, the SARIMA-LSTM model outperforms 
the SARIMA and LSTM models, with the LSTM model 
surpassing the SARIMA model. This suggests that the 
SARIMA-LSTM model can serve as a preferred tool for 
time series analysis, providing evidence for the govern-
ment to predict trends in gonorrhea incidence. The mod-
el’s predictions indicate that the incidence of gonorrhea 
in mainland China will remain at a high level in 2024, 
necessitating that policymakers implement public health 
measures in advance to prevent the spread of the disease.
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