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Abstract
Background Vaccination is effective in preventing viral respiratory infectious diseases through protective antibodies 
and the gut microbiome has been proven to regulate human immunity. This study explores the causal correlations 
between gut microbial features and serum-specific antiviral immunoglobulin G (IgG) levels.

Methods We conduct a two-sample bidirectional Mendelian randomization (MR) analysis using genome-wide 
association study (GWAS) summary data to explore the causal relationships between 412 gut microbial features and 
four antiviral IgG (for influenza A, measles, rubella, and mumps) levels. To make the results more reliable, we used four 
robust methods and performed comprehensive sensitivity analyses.

Results The MR analyses revealed 26, 13, 20, and 18 causal associations of the gut microbial features influencing four 
IgG levels separately.  Interestingly, ten microbial features, like genus Collinsella, species Bifidobacterium longum, and 
the biosynthesis of L-alanine have shown the capacity to regulate multiple IgG levels with consistent direction (rise or 
fall). The  reverse MR analysis suggested several potential causal associations of IgG levels affecting microbial features.

Conclusions The human immune response against viral respiratory infectious diseases could be modulated by 
changing the abundance of gut microbes, which provided new approaches for the intervention of viral respiratory 
infections.
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Introduction
Respiratory infectious diseases are caused by patho-
gens like viruses, bacteria, mycoplasma, and chlamydia 
through respiratory secretions [1]. Pandemics of respi-
ratory infectious diseases often affect many countries or 
regions and cause large numbers of deaths [2, 3]. Preven-
tion of respiratory infectious diseases continues to be 
an important public health initiative and vaccines play 
a critical role in prevention [4]. However, the capacity 
of protection by vaccination varies among individuals 
[5, 6]. Vaccines mediate protection by inducing B cells 
which produce antigen-specific antibodies [7]. When the 
host contracts a virus or receives a virus-specific vaccine, 
Immunoglobulin G (IgG) antibodies are secreted from 
B cells and bind to a variety of pathogens or antigens 
to avoid infection or provide protection [8, 9]. Previous 
studies showed that IgG level strongly correlated with the 
immune response to vaccination, and the IgG level could 
reflect the protective function of the specific vaccine [10, 
11]. Therefore, finding and intervening factors that affect 
individual IgG levels can improve vaccine protection 
function and enhance herd immunity.

Several studies have illuminated important roles for 
the gut microbiota in modulating B cells response that 
perhaps have important implications for the effects of 
the microbiota on specific IgG levels [12]. Moreover, the 
gut microbiota also produces a large number of metabo-
lites that have the potential to adjust immune responses. 
Short-chain fatty acids (SCFAs) had been shown to 
increase acetyl-coenzyme A and regulate metabolic sen-
sors to increase oxidative phosphorylation, glycolysis, 
and fatty acid synthesis in B cells to support antibody 
production, and had been shown to enhance the expres-
sion of genes involved in plasma cells (effector B cell) 
differentiation [7]. In addition, gut microbiota could be 
regulated in a convenient and harmless way through daily 
diet, probiotics, and prebiotics [13]. Thus, it is necessary 
to study the specific IgG level of immune response to 
vaccination against respiratory infectious diseases from 
the perspective of gut microbiota.

Influenza A, measles, rubella, and mumps caused by 
viruses are typical respiratory infectious diseases of con-
cern worldwide. In European, the vaccination rates for 
the four infectious diseases were high, which contributed 
to the high seroprevalences of these four virus-specific 
IgG levels [14]. Based on the high seroprevalences, this 
research had enough sample sizes to explore the causal 
correlation between gut microbiota and virus-specific 
IgG levels.

Mendelian randomization (MR), regarding genetic 
variants as instrumental variables (IVs) to explore the 
causal correlations between risk factors and diseases, has 
been widely used in causal inference [15]. Two-sample 
MR is an MR-based research method applicable to situa-
tions where exposure and outcomes are derived from two 
different populations [16]. Here, we used two-sample MR 
to illustrate the causal relationships between gut micro-
biota and serum virus-specific IgG levels of viral respira-
tory infectious diseases.

Methods
Data collection and processing
The genome-wide association studies (GWAS) summary 
statistics of 412 gut microbial features (including 207 
microbial taxa and 205 functional pathways) were col-
lected from NHGRI-EBI GWAS Catalog (https://www.
ebi.ac.uk/gwas/downloads/summary-statistics), which 
originally came from the Dutch Microbiome Project 
(DMP), a sub-project of LifeLines in Netherlands, and it 
investigated feces and phenotype information to assess 
the impact of different exposures and lifestyles on gut 
microbial composition using 7738 LifeLines participants 
[17, 18]. Of these DMP participants, 58.1% were female, 
mean age was 48.5 years, and mean BMI value was 25.58.

Specifically, the gut microbial taxa were divided 
according to Taxonomy, using “s_”, “g_”, “f_”, “o_”, “c_”, “p_”, 
and “k_” to represent species, genus, family, order, class, 
phylum, and kingdom, respectively. The pathways were 
identified from the MetaCyc Metabolic Pathways Data-
base (https://metacyc.org/ ), presenting in gut microbes 
and involving primary and secondary metabolism, as well 
as associated metabolites, reactions, enzymes, and genes 
[19].  Due to the lengthy names of functional pathways, 
we chose to use specific abbreviations, the full names 
of which were given in Supplementary Table S1. We 
regarded standard deviation (s.d.) as the unit of change of 
gut microbial features (Supplementary Table S2).

In addition, we estimated the heritability (h2) of all 412 
gut microbiome features using linkage disequilibrium 
score regression (LDSC) (v1.0.1), with the 503 European 
individuals from the 1000 Genome Project as the refer-
ence panel for analysis [20].

We collected four virus-specific immunoglobu-
lins G (IgG) levels datasets (anti-IAV IgG, anti-mea-
sles virus IgG, anti-rubella virus IgG, and anti-mumps 
virus IgG levels) focusing on long-term immunity also 
from the NHGRI-EBI GWAS Catalog, and the datas-
ets originally were from 1,000 healthy individuals of the 
Milieu Interieur (MI) cohort in France [21]. This cohort 
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consisted of 500 males and 500 females, with an age 
range between 20 and 70 years old. For the four men-
tioned IgG levels, Elisa or multiplex EIA techniques were 
used for quantitative detection, and the seroprevalence 
rate were 77.7%, 88.5%, 93.5%, and 91.2% separately [14].  
We also used s.d. as the unit of change.

Then, we filtered the single nucleotide polymorphisms 
(SNPs) in the abovementioned 416 data for subsequent 
analyses [22, 23]. We retained the SNPs following: (i) 
on the autosomes (1–22); (ii) minimum allele frequency 
(MAF) larger than 0.001; (iii) more than 70% of observers 
had these specific SNPs.

MR analysis
Two-sample MR is a method to estimate the causal effect 
of an exposure on an outcome using only summary sta-
tistics from GWAS [24, 25]. We treated the gut microbial 
features as exposures and the four anti-virus IgG levels as 
outcomes to conduct a two-sample MR study. Based on 
the datasets, we followed a strict screening procedure to 
select IVs in other previous MR studies [26, 27] (Fig. 1). 
First, we used the suggestive threshold P < 1E-5 to select 
genetic variations associated with each particular gut 
microbial feature. Second, we performed the clumping 
process [linkage disequilibrium (LD) r2 < 0.1, sliding win-
dow of 1 Mb] in the reference panel and retained iden-
tified LD-independent SNPs. Third, for each respiratory 
infectious disease, we screened the GWAS database to 
exclude SNPs associated with a specific IgG level to avoid 
potential pleiotropy and removed palindromic SNPs. 
Specifically, if the number of IVs was three or less, we 
excluded the microbial feature.

To explore the potential causal effects of gut micro-
bial features on the four IgG levels, we performed two-
sample MR analyses using the four methods including 
fixed-effects (IVW (fe)) and multiplicative random-
effects inverse variance weighting (IVW (mre)), weighted 
median (WM), and MR-Egger regression methods in the 
TwoSampleMR (v0.5.6) R package [28–30]. Importantly, 
we prefer to interpret the results based on the IVW (fe) 
model without heterogeneity or pleiotropy of IVs [31]. 
The MR-Egger regression model, where its intercept 
was used to evaluate the directional pleiotropy of instru-
ments, is preferred in the presence of pleiotropy while 
the WM method is preferred to account for it in the pres-
ence of heterogeneity [32, 33]. As a result, IVW (fe) and 
MR-Egger regression methods were mainly used to esti-
mate their causal effects with P < 0.05. We also performed 
false discovery rate (FDR) to adjust the false positive rate.

Sensitivity analysis
First, we used Cochran’s Q test to conduct a heterogene-
ity test to examine the differences between IVs. We used 
the P value of Q statistics < 0.05 as the significant level. 

Second, we performed a pleiotropy test. When there was 
a statistical difference between the intercept and zero 
(P < 0.05), horizontal pleiotropy existed. In addition, we 
performed Mendelian Randomization Pleiotropy RESid-
ual Sum and Outlier analysis (MR-PRESSO) to detect 
and correct the effects from outliers [34].

Reverse-direction MR analysis
We were also concerned about whether these four IgG 
levels affect the abundance of gut microbial features 
in humans. We used the same settings as the above-
mentioned MR analysis (P = 1.0E-5, r2 = 0.1, and win-
dow size = 1 Mb) to select IVs of four antiviral IgG levels 
(Fig.  1). In addition, we computed the sum of values of 
variance in phenotype explained (PVE) to assess the 
explanatory power of IVs, and computed the F statis-
tics following reference to judge whether IVs are strong 
instruments [35].

Results
Heritability of gut microbial features
Heritability is the proportion of variation in a given gut 
microbial feature that can be attributed to genetic fac-
tors. For all 412 gut microbial features, the median heri-
tability of all features was 5.25%, for example, 22.29% of 
species Alistipes senegalensis and 19.48% of Aspartate 
superpathway, while only 0.02% of family Prevotella-
ceae (Supplementary Table S1). The relative abundance 
variance of five genera could be explained over 10.00% 
by their corresponding independent genetic variants, 
including genus Bifidobacterium (13.05%), Barnesiella 
(13.00%), Bacteroidales noname (12.08%), Oscillibacter 
(12.26%) and Subdoligranulum (10.39%) (Fig. 2).

MR analyses
We calculated the causal effects of the remained vari-
ous gut microbial features with four anti-virus IgG levels 
respectively.

Anti-IAV IgG level
It was shown that diverse microbial taxa or functional 
pathways have different effects on a particular IgG, which 
manifested as positive or negative causal associations 
with different effect values. The number of gut microbial 
features causally associated with anti-IAV IgG level was 
the largest including 12 taxa and 14 pathways (P < 0.05). 
The taxa all belonged to the four phyla of Actinobacte-
ria, Bacteroidetes, Firmicutes, and Proteobacteria, which 
were consistent with the fact that these four phyla were 
the largest of the nine identified phyla of human gut 
microbiota [36].

Of these 12 microbial taxa, nine had the potential to 
elevate serum anti-IAV IgG concentration, including 
genus Bilophila (β =0.081, P = 0.04), species Bilophila 
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Fig. 1 The workflow diagram of this study. Plot A lists the detailed steps of two-sample MR in this study mentioned in the method, and Plot B shows how 
to do two-sample MR bidirectionally. X represents one of 412 microbial features, while Y represents one of 4 IgG levels
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unclassified (β =0.078, P = 0.013), genus Collinsella 
(β =0.076, P = 0.026), genus Ruminococcus (β =0.066, 
P = 0.049), family Veillonellaceae (β =0.066, P = 0.010), 
species Bifidobacterium longum (β =0.061, P = 0.035), 
phylum Bacteroidetes (β =0.062, P = 0.023), class Bacte-
roidia (β =0.062, P = 0.023), and order Bacteroidales (β
=0.062, P = 0.023). The results of the last three taxa were 
similar perhaps because of their affiliations. While three 
other taxa may decrease anti-IAV IgG level, including 
genus Lachnospiraceae noname (β =-0.103, P = 0.013), 
genus Coprococcus (β =-0.068, P = 0.022), and species 
Lachnospiraceae bacterium 3_1_46FAA (β =-0.065, 
P = 0.035) (Fig. 3A; Supplementary Table S3).

Similar to taxa, seven pathways had positive causal 
associations with anti-IAV IgG level, for example, the 
higher functional capacity for inosine 5’-phosphate deg-
radation (PWY-5695) contributed to a higher level of 
anti-IAV IgG (β =0.087, P = 0.007). Nevertheless, an 
increase functional capacity of seven pathways may lower 
anti-IAV IgG, such as the capacity of pantothenate and 
coenzyme A biosynthesis (PANTOSYN-PWY, β =-0.115, 
P = 0.020) with the largest negative effect (Fig. 3B; Supple-
mentary Table S3).

Anti-measles virus IgG
The number of gut microbial features causally associated 
with anti-measles IgG level was 13, involving five taxa 
and eight pathways (Fig.  3, C-D; Supplementary Table 
S4). Not entirely consistent with anti-IAV IgG level, these 
five taxa did not belong to phylum Bacteroidetes. Four 
taxa including species Bifidobacterium longum (β =0.117, 
P = 0.007), genus Collinsella (β =0.105, P = 0.039), species 
Desulfovibrio piger (β =0.104, P = 0.025), and genus Rumi-
nococcaceae noname (β =0.050, P = 0.028) had the poten-
tial to increase anti-measles virus IgG level. Only species 
Coprococcus catus may decrease the titer of anti-measles 
virus IgG (β =-0.114, P = 0.041).

For pathways, the higher functional capacity for L-ala-
nine biosynthesis (PWY0-1061, β =0.098, P = 0.024), 
NAD salvage (PYRIDNUCSAL-PWY, β =0.084, 
P = 0.036), and glycerol degradation to 1,3-propane-
diol (GOLPDLCAT-PWY, β =0.069, P = 0.030) may ele-
vate the level of anti-measles virus IgG. In addition, an 
increase functional capacity of five pathways could lower 
anti-measles virus IgG including ppGpp biosynthesis 
(PPGPPMET-PWY, β =-0.744, P = 0.026), purine nucleo-
bases degradation (P164-PWY, β =-0.288, P = 0.042), 

Fig. 2 Heritability (h2) of each microbial feature. The bar chart shows the independent genetic variation for 27 common genera explaining their pheno-
typic variation. Genera are classified by their 5 respective phyla marked in different colors
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N-acetylneuraminate degradation (P441-PWY, β
=-0.101, P = 0.031), hexitol fermentation to hexitol fer-
mentation to lactate, formate, ethanol and acetate (P461-
PWY, β =-0.099, P = 0.022), and purine nucleotides de 
novo biosynthesis (PWY-841, β =-0.092, P = 0.022). Con-
sidering the pleiotropy of IVs, the causal effects of P164-
PWY (P = 0.031) and PPGPPMET-PWY (P = 0.026) with 
anti-measles virus IgG were explained by the results of 
MR-Egger regression method.

Anti-rubella virus IgG
MR analyses showed that three microbial taxa and 17 
functional pathways had the potential to influence the 
anti-rubella virus IgG level (Fig.  4, A-B; Supplementary 
Table S5). These taxa only involving phylum Firmicutes 
and Bacteroidetes. The species Bacteroides intestinalis (β
=0.116, P = 0.016) and genus Ruminococcaceae noname 
(β =0.067, P = 0.045) perhaps had a positive impact on 

increasing anti-rubella virus IgG level while the species 
Eubacterium hallii (β =-0.104, P = 0.024) had a negative 
impact on this IgG level.

The pathways positively correlated with anti-rubella 
virus IgG were almost biosynthesis pathways, such as 
L-threonine biosynthesis (THRESYN-PWY,β =0.142, 
P = 0.043), palmitate biosynthesis (PWY-5971,β =0.130, 
P = 0.042), and L-glutamate and L-glutamine biosynthe-
sis (PWY-5505,β =0.111, P = 0.014). An increase func-
tional capacity of other eight pathways may decrease 
anti-measles virus IgG level mainly about biosynthe-
sis or degradation pathways, like purine nucleotides 
de novo biosynthesis (PWY-841,β =-0.213, P = 0.002), 
and glycogen degradation (GLYCOCAT-PWY,β =-
0.130, P = 0.035). Given that there was pleiotropy of IVs 
(P = 0.048), we used MR-Egger regression method to 
show the causal effect between the capacity of a kind of 

Fig. 3 Causal effects of gut microbial features on anti-IAV IgG and anti-measles virus IgG levels. The forest plots represent the MR estimates beta and 
95%CI values of the odds ratio of gut microbial features on different serum anti-IAV IgG (A, B) and anti-measles virus IgG levels (C, D), as estimated using 
the fixed effect (IVW) two-sample MR or MR-Egger methods
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heme biosynthesis (HEMESYN2-PWY) and the anti-
rubella virus IgG level.

Anti-mumps virus IgG
Five taxa and 13 functional pathways may adjust anti-
mumps virus IgG (Fig.  4, C-D; Supplementary Table 
S6). Similar to anti-rubella virus IgG, these taxa also 
belonged to phylum Firmicutes and Bacteroidetes. In 
which, the rise abundance of genus Subdoligranulum (β
=0.410, P = 0.015), species Bacteroides ovatus (β =0.274, 
P = 0.025), family Lachnospiraceae (β =0.083, P = 0.017) 
and species Eubacterium rectale (β =0.077, P = 0.022) 
may contribute to a higher serum anti-mumps virus 
IgG. However, species Ruminococcus callidus (β =-0.063, 
P = 0.028) perhaps decrease it.

Moreover, several pathways including L-methionine 
biosynthesis (PWY-5345, β =0.464, P = 0.039), D-galac-
tose degradation (PWY66-422, β =0.084, P = 0.042), 
purine nucleobases degradation (P164-PWY, β =0.073, 
P = 0.001), L-rhamnose degradation (RHAMCAT-PWY, 
β =0.072, P = 0.027), and pyrimidine ribonucleosides 
degradation (PWY-7209, β =0.065, P = 0.008) could 
up-regulate the concentrate of anti-mumps virus IgG 

in serum. On the contrary, a high capacity of several 
functional pathways like phospholipid biosynthesis in 
bacteria (PHOSLIPSYN-PWY, β =-0.315, P = 0.044), 
purine nucleotides de novo biosynthesis (PWY-841, β
=-0.085, P = 0.008), L-arginine biosynthesis in archae-
bacteria (PWY-7400, β =-0.077, P = 0.025), and entero-
bacterial common antigen biosynthesis (ECASYN-PWY, 
β =-0.038, P = 0.020) played a role in lowering anti-
mumps virus IgG. Since the pleiotropy of IVs presented, 
we selected MR-Egger regression method to access 
the causal relationships between Subdoligranulum 
(P = 0.022), Bacteroides ovatus (P = 0.029), L-methionine 
biosynthesis pathways (P = 0.046) and anti-mumps virus 
IgG.

Overlapping gut microbial features in the MR analyses
If we identify some common microbial traits that modu-
late different IgG levels, altering the abundance of spe-
cific microbial taxa or pathways was an excellent way 
to increase antiviral IgG levels simultaneously. Interest-
ingly, ten certain microbial taxa or functional pathways 
were causally associated with multiple serum-specific 
antiviral IgG levels (Table 1). Both genus Collinsella and 

Fig. 4 Causal effects of gut microbial features on anti-rubella virus IgG and anti-mumps virus IgG levels. The forest plots represent the MR estimates beta 
and 95%CI values of the OR of gut microbial features on anti-rubella virus IgG (A, B) and anti-mumps virus IgG levels (C, D), as estimated using the fixed 
effect (IVW) or MR-Egger method
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species Bifidobacterium longum were positively corre-
lated with anti-IAV IgG and anti-measles virus IgG. The 
genus Ruminococcaceae noname was causally correlated 
with anti-measles virus IgG and anti-rubella virus IgG. 
In addition, seven pathways were positively or negatively 
associated with multiple anti-virus IgG levels, in which, 
a higher function capacity of purine nucleotides de novo 
biosynthesis (PWY-841) could decrease anti-measles 
virus IgG, anti-rubella virus IgG, and anti-mumps virus 
IgG levels at the same time. Moreover, the improvements 
in the L-alanine biosynthesis and nicotinamide adenine 
dinucleotide (NAD) salvage (PWY0-1061 and PYRID-
NUCSAL-PWY) also could increase in these IgG levels.

As can be seen, the directions of associations of any 
microbial features with different IgG levels were consis-
tent, contributing to the rise or fall of IgG levels, except 
a pathway of purine nucleobases degradation (P164-
PWY).  We suspected that the discordance may be caused 
by fewer IVs of this pathway and different choices of MR 
methods.

Reverse MR analysis
Using anti-IAV IgG, anti-measles virus IgG, anti-rubella 
virus IgG, and anti-mumps virus IgG as exposure, we 
extracted 12, 11, 10, and six SNPs as IVs. The sum of val-
ues of PVE was 10.6%, 6.6%, 7.7%, and 5.1%.  The F sta-
tistics of the IVs screened for the four IgG levels were all 

Table 1 Overlapping of forwarding causal associations between gut microbial features and antiviral IgG levels
Exposure Outcome Fixed-effect

IVW
Random-effect 
IVW

Weighted 
median

MR-Egger Heterogeneity Pleiotropy
P (IVW) P (MR 

Egger)
P value

g_Collinsella anti-IAV IgG 1.079(1.009,1.153) 1.079(0.997,1.167) 1.048(0.954,1.152) 1.082(0.639,1.835) 0.197 0.131 0.99
anti-measles 
virus IgG

1.11(1.005,1.226) 1.11(1.067,1.155) 1.107(0.978,1.253) 0.969(0.521,1.801) 0.993 0.988 0.677

s_Bifidobacterium_
longum

anti-IAV IgG 1.063(1.004,1.125) 1.063(1.013,1.116) 1.063(0.987,1.145) 1.015(0.774,1.33) 0.69 0.605 0.741

anti-measles 
virus IgG

1.124(1.032,1.224) 1.124(1.019,1.24) 1.102(0.977,1.244) 1.269(0.781,2.063) 0.211 0.167 0.629

g_Ruminococcaceae_
noname

anti-measles 
virus IgG

1.051(1.005,1.099) 1.051(1.019,1.084) 1.06(1,1.124) 1.081(0.852,1.372) 0.862 0.792 0.82

anti-rubella 
virus IgG

1.069(1.001,1.142) 1.069(0.993,1.152) 1.034(0.944,1.133) 0.895(0.598,1.339) 0.258 0.245 0.412

PWY0-1061 anti-IAV IgG 1.062(1.003,1.125) 1.062(1.005,1.123) 1.073(0.996,1.156) 1.144(0.866,1.511) 0.462 0.381 0.615
anti-measles 
virus IgG

1.103(1.013,1.201) 1.103(1.042,1.167) 1.1(0.984,1.23) 1.208(0.809,1.804) 0.874 0.82 0.666

PWY-6690 anti-IAV IgG 0.956(0.919,0.994) 0.956(0.927,0.986) 0.97(0.923,1.02) 1.085(0.891,1.322) 0.689 0.841 0.268
anti-rubella 
virus IgG

0.909(0.83,0.995) 0.909(0.771,1.071) 0.973(0.838,1.13) 0.5(0.274,0.915) 0.01 0.125 0.142

PWY-841 anti-measles 
virus IgG

0.912(0.835,0.995) 0.912(0.838,0.992) 0.912(0.811,1.027) 0.633(0.428,0.938) 0.499 0.754 0.095

anti-rubella 
virus IgG

0.808(0.708,0.922) 0.808(0.689,0.948) 0.813(0.674,0.981) 0.651(0.322,1.318) 0.159 0.13 0.554

anti-mumps 
virus IgG

0.919(0.863,0.978) 0.919(0.869,0.972) 0.909(0.836,0.988) 1.034(0.779,1.371) 0.625 0.602 0.424

PYRIDNUCSAL-PWY anti-measles 
virus IgG

1.087(1.005,1.176) 1.087(1.02,1.159) 1.114(1.002,1.238) 0.836(0.555,1.259) 0.748 0.831 0.236

anti-rubella 
virus IgG

1.154(1.033,1.29) 1.154(1.048,1.272) 1.155(0.999,1.336) 1.713(0.873,3.36) 0.652 0.703 0.278

PWY-7446 anti-IAV IgG 0.952(0.919,0.986) 0.952(0.908,0.998) 0.937(0.89,0.985) 0.847(0.661,1.086) 0.101 0.108 0.39
anti-mumps 
virus IgG

0.963(0.929,0.998) 0.963(0.939,0.988) 0.974(0.933,1.018) 1.1(0.921,1.313) 0.82 0.966 0.184

P164-PWY anti-measles 
virus IgG

1.012(0.953,1.075) 1.012(0.949,1.079) 0.998(0.919,1.083) 0.75(0.59,0.952) 0.341 0.857 0.031

anti-mumps 
virus IgG

1.076(1.031,1.123) 1.076(1.038,1.116) 1.049(0.99,1.111) 1.029(0.867,1.22) 0.716 0.656 0.607

PWY-HEME-BIOSYN-
THESIS-II

anti-rubella 
virus IgG

0.867(0.777,0.968) 0.867(0.767,0.98) 0.831(0.713,0.969) 1.064(0.705,1.607) 0.267 0.275 0.335

anti-mumps 
virus IgG

0.934(0.886,0.985) 0.934(0.882,0.99) 0.946(0.874,1.024) 0.886(0.716,1.096) 0.273 0.225 0.624
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above 10, indicating that these IVs are strong instruments 
(Supplementary Table S7).

After reverse MR analyses, we found 24, 16, 20, and 10 
gut microbial features affected by these four IgG levels 
respectively (Supplementary File: Figure S1 and S2) In 
addition, we identified five taxa (phylum Verrucomicro-
bia, species Parabacteroides merdae, Alistipes finegoldii, 
Eubacterium eligens, and Bacteroides plebeius) without 
any pathway that could be affected by more than one IgG 
levels (Table 2).

Discussion
This study performed comprehensive two-sample MR 
analyses to reveal the causal relationships between gut 
microbial features and antiviral IgG levels. Importantly, 
these inferred relationships were proved to be robust 
through various sensitivity analyses.

Previous studies have showed that some taxa influ-
enced human immune system such as Bacteroidetes 
which could stimulate the innate immune system and 
Ruminococcus which contributed to upregulate immunity 
by producing short-chain fatty acid (SCFA), supporting 
the results of these taxa had positive effect on anti-IAV 
IgG in this study [37, 38]. In addition, we found that spe-
cies Desulfovibrio piger may increase serum anti-measles 
virus IgG level. In fact, Desulfovibrio piger was the most 
common sulfate-reducing bacteria in healthy adults, and 
positively associated with beneficial genera like Bacte-
roides and Ruminococcus [39, 40]. For another, species 
Coprococcus catus had a negative impact on anti-measles 
virus IgG level, and it has proved to generate propanoic 
acid (a SCFAs) which had immunomodulatory properties 
[41, 42]. Subdoligranulum has been proved to simulate 

TH17 cell expansion and serum specific IgG [43]. Bacte-
roides ovatus was not only previously reported to modu-
late intestinal immunity, but also correlated with the host 
genetic variant [44, 45]. Lachnospiraceae of gut bacteria 
are abundant in healthy humans, and influence the hosts 
by producing SCFAs, converting bile acids, and facilitat-
ing colonization resistance against specific pathogens 
[46].

Interestingly, we also found ten microbial features 
could simultaneously regulate multiple antiviral IgG lev-
els, such as genus Collinsella, Ruminococcaceae noname, 
and species Bifidobacterium longum, which will provide 
a reference for preventing different respiratory infectious 
diseases by adjusting same gut microbial traits. Previous 
studies have shown that Collinsela was one of the core 
microbiotas in healthy people, and a lower abundance 
of Collinsela predicted a higher respiratory infectious 
disease mortality [47]. Bifidobacterium longum has also 
attracted considerable attention among gut bacteria. In a 
double-blind study, Bifidobacterium longum stimulated 
immune function in 45 elderly hospitalized patients who 
had received influenza vaccines [48]. These surveys sup-
ported our findings of a high abundance of Collinsela and 
Bifidobacterium longum could enhance human immu-
nity by elevating antibody concentrations. Moreover, this 
study confirmed that the functional capacity of micro-
bial pathways, especially those involved in nucleotide 
and amino acid synthesis, may also affect the long-term 
immunity levels against respiratory infectious diseases.

The reverse MR analyses illuminated that human 
immune capacity also had an impact on the abundance of 
gut microbial features. However, the specific mechanism 

Table 2 Overlapping of potential reverse causal associations between antiviral IgG levels and gut microbial features
Exposure Outcome Fixed-effect

IVW
Random-effect 
IVW

Weighted 
median

MR-Egger Heterogeneity Pleiotropy
P(IVW) P (MR 

Egger)
P value

anti-IAV IgG p_Verrucomicrobia 0.727(0.534,0.989) 0.727(0.614,0.861) 0.685(0.472,0.993) 1.332(0.219,8.094) 0.975 0.972 0.523
anti-rubella 
virus IgG

1.159(1.001,1.343) 1.159(0.993,1.353) 1.215(0.986,1.498) 0.869(0.43,1.754) 0.355 0.326 0.437

anti-IAV IgG s_Parabacteroides_
merdae

1.385(1.028,1.865) 1.385(1.04,1.845) 1.189(0.802,1.763) 1.602(0.354,7.252) 0.505 0.415 0.851
anti-measles 
virus IgG

1.374(1.126,1.677) 1.374(1.059,1.783) 1.271(0.922,1.752) 1.683(0.625,4.535) 0.073 0.053 0.686

anti-IAV IgG s_Alistipes_finegoldii 1.413(1.071,1.865) 1.413(1.071,1.864) 1.279(0.861,1.9) 0.678(0.169,2.724) 0.443 0.451 0.318
anti-mumps 
virus IgG

1.544(1.07,2.229) 1.544(1.112,2.145) 1.462(0.904,2.365) 2.169(0.215,21.854) 0.524 0.374 0.789

anti-rubella 
virus IgG

s_Eubacterium_eli-
gens

1.205(1.045,1.389) 1.205(1.086,1.338) 1.167(0.968,1.407) 1.602(0.852,3.012) 0.829 0.837 0.395

anti-mumps 
virus IgG

1.523(1.043,2.225) 1.523(0.927,2.504) 1.193(0.684,2.081) 6.097(0.254,146.094) 0.142 0.138 0.45

anti-rubella 
virus IgG

s_Bacteroides_ple-
beius

0.757(0.576,0.995) 0.757(0.63,0.911) 0.742(0.526,1.047) 0.401(0.119,1.349) 0.888 0.925 0.327

anti-mumps 
virus IgG

2.111(1.023,4.356) 2.111(0.985,4.525) 2.99(1.087,8.229) 0.063(0.001,5.133) 0.351 0.59 0.211
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under antiviral antibodies regulate microbes was still 
unclear.

While our data-driven approach highlighted the poten-
tial of MR to uncover associations between microbiota 
and immune indicators, we should be cautious about the 
causalities. There were some limitations of this study that 
should be considered. First, similar to other MR studies, 
we have assumed linear relationships between gut micro-
bial features and antiviral IgG levels in the MR model 
[49]. Nonetheless, we could not rule out the possibility 
that the relationships between gut microbial features and 
IgG levels were actually non-linear. Second, gender and 
age are the most common confounding factors in epide-
miology, but we were unable to use GWAS summary data 
for stratified analyses to estimate and validate specific 
causal effects by gender or age stage. Besides, although 
MR design used genetic variants as IVs to minimize the 
effects of environmental confounding factors, it still can-
not completely remove the confounding bias. Third, part 
of the microbial features in this study utilized few SNPs 
as IVs, resulting in a limited ability to identify causal 
relationships. Fourth, we performed FDR correction for 
P values, and used a nominal significance level of 0.05. 
If there are larger sample GWAS data available in the 
future, the relationship between gut microbiome and IgG 
level may become more significant after correction.

Conclusions
This study has identified causal relationships between 
certain gut microbial features and serum-specific anti-
viral IgG levels. The results added new evidence for the 
influence of gut microbes on the human immune system, 
which provides a reference for enhancing population 
immunity to prevent respiratory infectious diseases after 
vaccination by adjusting gut microbes from a clinical and 
public health perspective.
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