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Abstract
Background Influenza-like illness (ILI) imposes a significant burden on patients, employers and society. However, 
there is no analysis and prediction at the hospital level in Chongqing. We aimed to characterize the seasonality of ILI, 
examine age heterogeneity in visits, and predict ILI peaks and assess whether they affect hospital operations.

Methods The multiplicative decomposition model was employed to decompose the trend and seasonality of ILI, 
and the Seasonal Auto-Regressive Integrated Moving Average with exogenous factors (SARIMAX) model was used 
for the trend and short-term prediction of ILI. We used Grid Search and Akaike information criterion (AIC) to calibrate 
and verify the optimal hyperparameters, and verified the residuals of the multiplicative decomposition and SARIMAX 
model, which are both white noise.

Results During the 12-year study period, ILI showed a continuous upward trend, peaking in winter (Dec. - Jan.) and 
a small spike in May-June in the 2–4-year-old high-risk group for severe disease. The mean length of stay (LOS) in ILI 
peaked around summer (about Aug.), and the LOS in the 0–1 and ≥ 65 years old severely high-risk group was more 
irregular than the others. We found some anomalies in the predictive analysis of the test set, which were basically 
consistent with the dynamic zero-COVID policy at the time.

Conclusion The ILI patient visits showed a clear cyclical and seasonal pattern. ILI prevention and control activities 
can be conducted seasonally on an annual basis, and age heterogeneity should be considered in the health resource 
planning. Targeted immunization policies are essential to mitigate potential pandemic threats. The SARIMAX model 
has good short-term forecasting ability and accuracy. It can help explore the epidemiological characteristics of ILI and 
provide an early warning and decision-making basis for the allocation of medical resources related to ILI visits.

Keywords Influenza-like illnesses (ILI), Time series, Seasonal auto-regressive integrated moving average with 
eXogenous factors (SARIMAX), Forecast

Seasonality of influenza-like illness and short-
term forecasting model in Chongqing 
from 2010 to 2022
Huayong Chen1 and Mimi Xiao1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-024-09301-4&domain=pdf&date_stamp=2024-4-22


Page 2 of 9Chen and Xiao BMC Infectious Diseases          (2024) 24:432 

Background
Influenza is an ongoing public health problem, a simple 
definition of influenza-like illnesses (ILI) is defined as 
fever (temperature ≥ 38  °C) with cough or sore throat 
[1–3]. Each year, influenza epidemics cause a large num-
ber of hospitalizations and deaths worldwide, especially 
among adults over 65 years, placing a significant direct 
and indirect burden of costs on the health system [4–6].. 
In China, the burden of influenza-associated influenza-
like illness is consistently higher among children (0–14 
years), followed by adults (15–59 years) and then older 
adults (≥ 60 years) [7, 8]. Therefore, predicting the trend 
and seasonality of ILI has important implications for allo-
cation of related medical resources.

A large number of studies focused on influenza [9–11], 
influenza virus types A(H1N1), A(H3N2), B, mixed [12–
18], COVID-19 [19–24] and other related diseases. The 
models used include SARIMA, Exponential Smoothing 
(ETS), Neural Network Autoregressive (NNAR) model, 
Long-Short Term Memory (LSTM), Self-adaptive AI 
Model (SAAIM) [25–28], etc. The data used in existing 
studies were mostly uploaded from influenza surveillance 
sentinel hospitals into the influenza surveillance system, 
and most of these data reported cases were confirmed 
by influenza virus nucleic acid testing. However, in prac-
tice when patients seek medical treatment, as long as 
they show symptoms related to ILI, the resources will be 
spent on related consultation and treatment. If we only 
rely on the data collected in the influenza surveillance 
system, the predicted value from the model might be less 
than the actual cost of investment. To alleviate this bias, 
we used the first page data of electronic medical cases 
uploaded directly by medical institutions, and expanded 
the search scope of ILI, hence we might be able to obtain 
a predicted value which would be closer to the actual 
resources invested by the health system.

Methods
Data source
As mentioned earlier, the medical resources will be spent 
on the treatment of any patients with potential symptoms 
related to ILI, so the use of only J11 and J12 of the Inter-
national Classification of Diseases (ICD-10) as the basis 
for searching, might underestimate the burden of costs 
on medical institutions. In order to obtain a more accu-
rate estimate of the visitation rates of influenza-like ill-
ness in Chongqing, we expanded the scope and selected 
the relevant codes of ILI in ICD-10 (include J06.900, J10, 
J11, J12, J15.902, J15.903, J18.900, J18.901, J18.903) as 
the basis for the search. The data uploaded through the 
electronic medical record of seven hospitals from January 
2010 to May 2022 were collected through the YiDuCloud 
platform, total number of people included in the study 
was 1,684,929. These seven hospitals are all large tertiary 

hospitals in Chongqing, one of which is a children’s hos-
pital, and the scope of medical services basically covers 
major districts and counties in Chongqing. In this study, 
YiDuCloud has removed all identifiable patient informa-
tion, so there is no violation of patient privacy policy. In 
addition, we collected historical data of monthly average 
maximum temperature, average minimum temperature, 
PM2.5 [29] and PM10 from the China Meteorological 
Administration from 2011 to 2022 to build the model.

Model establishment
We used the first 90% of the data from January 2010 to 
May 2022 as the training dataset and the rest as the vali-
dation dataset for modeling. And we divided the data 
into 4 groups (total number of visits, total number of 
outpatient and emergency departments, total number 
of inpatients, and average length of stay per month), and 
subdivided each group into 4 groups (0–1 years old, 2–4 
years old, 5–64 years old, ≥ 65 years old) according to the 
age of high-risk groups of severe cases in Chinese influ-
enza diagnosis and treatment protocol and due to the 
first year of life is a special period for infants and young 
children, we made a separate prediction for 0–1 years 
old. Specifically following steps: stationarity test, optimal 
model building, residual diagnosis, predictive analysis 
and evaluation optimal model prediction values. The sta-
tistical modeling was analyzed by Stata 17.0 and Python 
3.10.

Model selection
Seasonal Auto-Regressive Integrated Moving Average 
with eXogenous factors (SARIMAX) was combination 
of autoregressive (AR) and moving average (MA) models 
(see appendix materials for AR and MA detailed formu-
las) and added seasonality with or without differencing.

A Seasonal Auto-Regressive Integrated 
Moving Average with eXogenous factors 
(SARIMAX (p, d, q) × (P, D, Q) s ) model is formed by 
including additional seasonal terms in the ARIMA mod-
els. It is written as follows:

 

(
1 − φ1B − · · · − φpB

P
)

(
1 − Φ1B

s − · · · − ΦPBPs
)

(1 − B)d(1 − Bs)Dyt

= c + βtXt + (1 + θ1B + · · · + θqB
q)

(1 + Θ1B
s + · · · + ΘQBQs)εt

where p  is order of the autoregressive part, d  is degree 
of differencing involved, q  is order of the moving average 
part, P  is order of the autoregressive seasonality part, D  
is degree of seasonality differencing involved, Q  is order 
of the moving average seasonality part, s  is the length 
of the seasonal cycle, Xt  is exogenous variable and βt  is 
parameter.
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Stationarity test
The time series were constructed and combined with 
Augmented Dickey-Fuller (ADF), Auto Correlation 
Function (ACF) graphs and Partial Auto Correlation 
Function (PACF) graphs for identification of smoothness 
and periodicity of the original time series. If the ADF test 
p-value>0.05, the time series is considered to be non-sta-
tionary and we will be difference to eliminate trends and 
seasonality. The ADF test p-value<0.05, the time series 
can be considered as stationarity, and then the ACF and 
PACF plots are drawn to select the initial search band of 
hyperparameters.

Hyperparameter selection
The initial range of values of p, d, q  and P, D, Q, s  were 
determined by the tails and truncations of the ACF and 
PACF plots. Then the optimal combinations of hyper-
parameters for the SARIMAX model are determined by 
matching within the above initial range of values through 
Grid Search and Akaike information criterion (AIC). 
Finally, the residual distribution of the optimal model was 
diagnosed to be consistent with the white noise series, 
and if so, the model can be used for prediction. We will 
use the Mean Absolute Percentage Error (MAPE) for the 
evaluation of the SARIMAX model, the closer the MAPE 
value is to 0 the better the model is.

Results
Stationarity test and time series multiplication 
decomposition
We conducted ADF test (Appendix Figs.  6, 7, 8, 9 and 
10) and time series multiplication decomposition for 
all groups, and found that a few groups were stationary 
series, but all groups showed trend and seasonality after 
multiplication decomposition (Appendix Figs.  1, 2, 3, 4 
and 5). Therefore, we performed trend and seasonality 
difference for all groups, and drew ACF and PACF plots 
(Appendix Figs. 6, 7, 8, 9 and 10) to determine the scope 
of Grid Search.

Appendix Fig.  1 shows the multiplication decomposi-
tion of all patient visits, in which the number of patient 
visits in all groups shows an upward trend, with a peak 
near December to January and a trough around August. 
The aged 0–1, 2–4 and 5–64 years had a trough near Feb-
ruary (Appendix Fig. 1A, B, C), the 2–4 years old had a 
small peak near May, and the ≥ 65 years old group had a 
small trough near May (Appendix Fig. 1B, D). In general, 
the number of visits for ILI were more irregular in the 
2–4 age group compared to other groups.

Appendix Fig.  2 shows the time series decomposition 
of the number of outpatient and emergency department 
visits. The prevalence trend, peak and trough situation 
are similar to that of appendix Fig.  1, and the peak and 
trough difference of the number of 2–4 years old patients 

due to ILI is the largest (appendix Fig.  2B). Appendix 
Fig. 3 shows the time series decomposition of the number 
of inpatients, due to the business adjustment of the YiDu-
Clould platform in 2018, the time series chart has experi-
enced large fluctuations. The peak-valley difference in the 
number of inpatients aged 2–4 is the largest (appendix 
Fig. 3B).

Appendix Fig.  4 shows the time series decomposition 
of the average length of hospitalization per month. LOS 
in the 0-1-year-old group was the most irregular, with 
peaks in April, August and November, and low points in 
January, June and September (Appendix Fig. 4A). In the 
2–4 age group, LOS showed a peak in August, a small 
peak in April, and a trough in June and October (Appen-
dix Fig. 4B). LOS peaks for aged 5–64 occur in February 
and August, troughs occur in January and June, and there 
are smaller troughs in October (Appendix Fig. 4C). LOS 
aged 65 and older peaks in July, with a persistent small 
peak around March, and troughs in January and Septem-
ber (Appendix Fig. 4D).

Appendix Fig.  5 shows the multiplication decomposi-
tion of all patient visits by medical visit type and LOS, 
which shows that the number of visits is increasing year 
by year (appendix Fig. 5A). After the outbreak of COVID-
19 in 2020, the average LOS per month in ILI (exclud-
ing COVID-19 cases) increased significantly (appendix 
Fig. 5D). However, it is interesting to note that the aver-
age LOS per month is the opposite of the seasonal per-
formance of the number of hospitalizations, with the 
average length of hospitalization per month reaching 
a low point around January and a peak around August 
(Appendix Fig. 5C, D).

Forecast performance of SARIMAX
We determined the initial search range of hyperpa-
rameters based on the plotted ACF and PACF graphs, 
and used grid search and Akaike information criterion 
(AIC) to determine the best SARIMAX models (Appen-
dix Table 1). We then performed a residual diagnosis on 
the residuals of the optimal model, which showed that 
the residuals for all groups were white noise (Appendix 
Figs. 11, 12, 13, 14 and 15), indicating that we could use 
these models for the following predictions.

Figure 1 predicts the total number of visits. Figure 1A, 
B, C, and D correspond to projections for 0–1 years 
old group (Train MAPE = 0.1166, Test MAPE = 0.2850, 
Table  1), 2–4 years old group (Train MAPE = 0.2062, 
Test MAPE = 0.3635, Table  1), 5–64 years old group 
(Train MAPE = 0.1593, Test MAPE = 0.1248, Table  1), 
and ≥ 65 years old group (Train MAPE = 0.1376, Test 
MAPE = 0.1867, Table  1), respectively. The 5–64 age 
group performed best, with a difference of 0.0345 
(Table  1) MAPE between the training and the test set, 
and the 0–1 years old group had the worst performance, 
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with a difference of 0.1684 (Table  1) in MAPE value. 
The red dots in the figure represent the true value that 
exceeds the 95% Confidence Interval predicted by the 
SARIMAX model, and the outliers that exceed the upper 
limit are our main objects of concern. One abnormal 
phenomenon can be found in the test set in the 2–4 age 
group, that exceeded the upper limit of our 95% predic-
tion interval (Fig. 1B). Figure 1 predicts the total number 
of visits. Figure  1A, B, C, and D correspond to projec-
tions for 0–1 years old group (Train MAPE = 0.1166, Test 
MAPE = 0.2850, Table  1), 2–4 years old group (Train 
MAPE = 0.2062, Test MAPE = 0.3635, Table 1), 5–64 years 
old group (Train MAPE = 0.1593, Test MAPE = 0.1248, 
Table 1), and ≥ 65 years old group (Train MAPE = 0.1376, 
Test MAPE = 0.1867, Table  1), respectively. The 5–64 

age group performed best, with a difference of 0.0345 
(Table  1) MAPE between the training and the test set, 
and the 0–1 years old group had the worst performance, 
with a difference of 0.1684 (Table  1) in MAPE value. 
The red dots in the figure represent the true value that 
exceeds the 95% Confidence Interval predicted by the 
SARIMAX model, and the outliers that exceed the upper 
limit are our main objects of concern. One abnormal 
phenomenon can be found in the test set in the 2–4 age 
group, that exceeded the upper limit of our 95% predic-
tion interval (Fig. 1B).

Figure 2 shows the prediction of outpatient and emer-
gency department attendance. Figure  2A, B, C, and D 
correspond to the predictions of the groups aged 0–1 
years group (Train MAPE = 0.1565, Test MAPE = 0.3433, 

Table 1 Optimal SARIMAX Models’ Mean Absolute Percentage Error (MAPE)
All Number
of Patients

Outpatient and
Emergency

Inpatient Average Length of Stay Per Month

Train
All Age 0.1271 0.1452 0.1004 0.0417
0–1 years old group 0.1166 0.1565 0.1623 0.0450
2–4 years old group 0.2062 0.2356 0.2933 0.0779
5–64 years old group 0.1593 0.1748 0.1151 0.0738
≥ 65 years old group 0.1376 0.1494 0.2000 0.1848
Test
All Age 0.1903 0.1889 0.1680 0.1301
0–1 years old group 0.2850 0.3433 0.6944 0.1908
2–4 years old group 0.3635 0.3403 0.3880 0.0800
5–64 years old group 0.1248 0.1288 0.1444 0.1787
≥ 65 years old group 0.1867 0.1730 0.1540 0.1513

Fig. 1 Optimal SARIMAX model prediction of number of patients. A is 0–1 years old group, B is 2–4 years old group, C is 5–64 years old group, D is ≥ 65 
years old group
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Table  1), 2–4 years group (Train MAPE = 0.2356, Test 
MAPE = 0.3403, Table  1), 5–64 years group (Train 
MAPE = 0.1748, Test MAPE = 0.1288, Table  1), and ≥ 65 
years group (Train MAPE = 0.1494, Test MAPE = 0.1730, 
Table  1), respectively. Among them, the ≥ 65 age group 
has the best performance, and the MAPE difference 
between the training set and the test set is 0.0236, and 

the 0–1 years old group had the worst performance, with 
a difference of 0.1868 in MAPE value (Table 1). In the test 
set, the true value of outpatient and emergency depart-
ment attendance exceeded the 95%CI upper limit in two 
cases (Fig. 2B).

Figure  3 shows the projected number of inpa-
tients, Fig.  3A, B, C, and D correspond to predictions 

Fig. 3 Optimal SARIMAX model prediction of inpatient. A is 0–1 years old group, B is 2–4 years old group, C is 5–64 years old group, D is ≥ 65 years old 
group

 

Fig. 2 Optimal SARIMAX model prediction of outpatient and emergency. A is 0–1 years old group, B is 2–4 years old group, C is 5–64 years old group, D 
is ≥ 65 years old group
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of 0–1 years old group (Train MAPE = 0.1623, Test 
MAPE = 0.6944, Table  1), 2–4 years old group (Train 
MAPE = 0.2933, Test MAPE = 0.3880, Table 1), 5–64 years 
old group (Train MAPE = 0.1151, Test MAPE = 0.1444, 
Table 1), and ≥ 65 years old group (Train MAPE = 0.2000, 
Test MAPE = 0.1540, Table 1), respectively. Among them, 
the 5-64-year-old group had the best performance, and 
the MAPE difference between the training set and the 
test set was only 0.0293 and the 0–1 years old group had 
the worst performance, with a difference of 0.5321 in 
MAPE value (Table 1).

Figure 4 shows the prediction of the average LOS per 
month for the total population. Figure  4A, B, C, and D 
correspond to the predictions of the four groups aged 0–1 
years group (Train MAPE = 0.0450, Test MAPE = 0.1908, 
Table  1), 2–4 years group (Train MAPE = 0.0779, Test 
MAPE = 0.0800, Table  1), 5–64 years group (Train 
MAPE = 0.0738, Test MAPE = 0.1787, Table  1), and ≥ 65 
years group (Train MAPE = 0.1848, Test MAPE = 0.1513, 
Table  1), respectively. Among them, the 2–4 age group 
has the best performance, and the MAPE difference 
between the training set and the test set is only 0.0021 
and the 0–1 years old group had the worst performance, 
with a difference of 0.1458 in MAPE value (Table 1). In 
the test set, the actual average LOS per month in the 0–1 
age group exceeded the upper limit 6 times.

Figure 5 predicts the total number of visits by medical 
visit type and LOS. Figure  5A predicts the total num-
ber of visits (Train MAPE = 0.1271, Test MAPE = 0.1903, 
Table  1), B is outpatient and emergency group (Train 

MAPE = 0.1452, Test MAPE = 0.1889, Table 1), C is inpa-
tient group (Train MAPE = 0.1004, Test MAPE = 0.1680, 
Table  1), D is average LOS per month (Train 
MAPE = 0.0417, Test MAPE = 0.1301, Table 1). There are 
two true values exceed 95%CI.

Discussion
ILI is a year-round disease burden that causes varying 
degrees of illness, sometimes leading to hospitalization 
and death [30]. However, current time series surveys and 
projections for ILI in Chongqing are using the national 
influenza surveillance system [9, 17, 18, 31–33] and are 
likely to underestimate ILI’s burden on hospital opera-
tions. Therefore, in this study, we applied the SARI-
MAX time series method, which can effectively capture 
the cyclical and seasonal changes of diseases [34, 35], to 
the personal electronic medical data stored in hospitals 
for many years, to check the prevalence time and inten-
sity of ILI in Chongqing, so as to predict the medical 
resources needed by the actual treatment of ILI in hos-
pitals. In our study, using ILI data over a 12-year period, 
we identified an annual seasonal pattern in Chongqing, 
with influenza activity peaking around December to Jan-
uary each winter, the significant seasonality and period-
icity is consistent with the previous studies [9, 10]. The 
seasonal characteristics of Chongqing are similar to those 
of Shenyang, but different from Shenzhen, whose ILI(%) 
peak occurs in summer [36]. In addition, to facilitate 
early warning, we added abnormal feedback over 95% 
forecast Confidence Intervals to forecast ILI trends and 

Fig. 4 Optimal SARIMAX model prediction of average length of stay per month. A is 0–1 years old group, B is 2–4 years old group, C is 5–64 years old 
group, D is ≥ 65 years old group
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seasonality. Once the actual number of patients exceeds 
the 95%CI predicted by the number of ILI patients and 
the LOS, we believe that ILI begins to affect the nor-
mal operation of the hospital and may form an ILI pan-
demic. At this time, the hospital and the government 
should make emergency plans in advance according to 
the actual situation, and allocate the medical materials 
correspondingly.

We also analyzed the heterogeneity of visits and LOS 
in ILI, with similar peaks for outpatient and emergency 
department visits and hospitalizations, but a small spike 
in April-June in the 0–4-year-old high-risk group of 
severely ill people, which increases the possibility of 
influenza virus transmission in institutions such as kin-
dergartens. In the heterogeneity analysis of LOS decom-
position, we found that LOS and the number of visits 
peak at different times, LOS peak in summer, which may 
indicate that ILI symptoms are more severe in summer, 
therefore require longer hospitalization time. Moreover, 
the outbreak of COVID-19 in 2020 significantly affected 
the treatment of ILI patients and increased the LOS of 
ILI patients. And LOS in the severely high-risk group is 
more irregular than that in the normal group, especially 
in the 0–1 age group, which significantly increased dur-
ing the epidemic rebound in 2021, indicating that the 
COVID-19 epidemic had a more serious impact on this 
group. The possible reason is that the high-risk group 
may lack prior exposure to the virus and have poor 
immunity [18], resulting in more unstable disease, and 
LOS becoming more irregular. The above may also be 
one of the reasons why the difference in MAPE between 

the 0–1 years old test set and the training set is larger 
than the other groups. When LOS of high-risk patients 
is found to exceed 95%CI of our predictive model, doc-
tors should pay more attention to this group of patients 
to avoid exacerbation of their disease. These age group 
differences in ILI seasonality have implications not only 
for vaccination timing, but also for vaccine composition. 
Therefore, age heterogeneity may be an important con-
sideration in the future development of immunization 
policies in Chongqing (for example, one additional vac-
cination in April-June for severely ill high-risk groups, 
especially those aged 0–4 years), and may be a useful 
assessment and reference for other regions with similar 
climates to Chongqing.

This study also has some limitations. First, we collected 
data through May 2022, when China’s non-pharmaceu-
tical measures for COVID-19 are still dynamic zero-
COVID policy, we did not include China’s dynamic zero 
COVID-19 policy at that time in the model, resulting 
in a difference in the MAPE of the training set and the 
test set, this may increase the error rate in predicting the 
number of ILI visits in China after full lifting, too. Sec-
ond, we did not include the COVID-19 attendance data 
in this prediction model due to its sensitivity, ordinary 
people lack expertise in COVID-19 diagnosis and may 
be classified as COVID-19 diagnosis and excluded by us 
after they have utilized ILI’s treatment resources, which 
may lead to slight differences between our prediction and 
the actual situation. The two points above may also be the 
reason why the predicted values of some test sets of our 
model differ greatly from the actual values. Longer-term 

Fig. 5 Optimal SARIMAX model prediction of number of patients by medical visit type and LOS. A is all patients group, B is outpatient and emergency 
group, C is inpatient group, D is average length of stay per month
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time series will help improve the ability to detect and 
validate ILI prevalence trends and seasonality. Given that 
granular temporal surveillance data are often not avail-
able when ILI is prevalent, we pooled the data from all 
analyses to monthly levels, which may hide the variabil-
ity that can occur at weekly levels, but previous studies 
have found that such data is not essential for capturing 
temporal disease transmission patterns [37]. In the fol-
low-up study, we will consider the corresponding actual 
situation and collect the data to the week for prediction 
when the data is feasible. If practicable, we can consider 
including the dynamic zero COVID-19 policy into exter-
nal variables for model correction, and extend the time 
of data inclusion to 2024 to enhance the accuracy and 
applicability of the forecast, so as to achieve the goal of 
providing reference for public health decision-making in 
a timely manner. Finally, the service of the seven hospi-
tals included in the YiDuCloud platform might not cover 
all the Chongqing, so the prediction model is only appli-
cable to the number of ILI visits in the service area of 
the hospitals above, hence one should be cautious when 
applying the interpretation to the whole municipal area 
of Chongqing.

Conclusion
Despite some limitations, our study provides a strong 
quantitative estimate of ILI prediction and early warning 
at the hospital level in Chongqing over a 12-year period. 
Our results showed that ILI prevalence had a strong sea-
sonality, and the LOS in the critically ill high-risk group 
was irregular. There was a small peak of the number of 
patients in the critically ill high-risk group aged 2–4 years 
from April to June. Because early detection is essential to 
prevent and control the spread of ILI, our study could be 
useful for early detection of ILI epidemics or for strength-
ening surveillance of infection in key populations during 
periods of high ILI transmission. Therefore, our research 
results are of great significance for decision-makers to 
grasp the epidemic trend and seasonality of ILI in time. 
Prediction analysis based on SARIMAX model is helpful 
to effectively save medical resources, reduce the burden 
of medical institutions and health systems, and reduce 
social and economic costs.
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