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Abstract

Background: How HIV-1| enter into the eyes remains obscure. We postulated that HIV-1 Tat protein
can alter the expression of specific tight-junction proteins and disturb the blood retinal barrier, and
contributes to HIV trafficking into the eyes. This study is to determine the effects of HIV-I Tat proteins

on the barrier function and tight-junction protein expression of retinal pigment epithelial cell (RPE).

Methods: A human RPE cell line (D407) cultured on microporous filter-supports was used. After treating
with HIV-I Tat protein, transepithelial electrical resistance (TER) of confluent RPE cells was measured by
epithelial voltmeter. The permeability of the RPE cells to sodium fluorescein was measured. The
expressions of the occludin and claudins were determined by real-time polymerase chain reaction,
immunofluorescence, and Western blot analysis. Activation of ERK1/2 was detected by Western blot
analysis with specific antiphospho protein antibodies. NF-kB DNA binding activity was determined by
transcription factor assay. Specific pharmacologic inhibitors directed against the MAPKs were used to

analyze the signaling involved in barrier destruction of RPE cells exposed to HIV-1 Tat.

Results: Treating cultured human retinal pigment epithelial cells with 100 nM Tat for 24 hours increased
the permeability and decreased the TER of the epithelial monolayer. HIV-1 Tat also disrupted and
downregulated the tight-junction proteins claudin-1, claudin-3, and claudin-4 in these cells, whereas
claudin-2 was upregulated, and the expression of occludin was unaffected. HIV-I Tat protein also induced
activation of ERK1/2 and NF-kB. HIV-| Tat protein induced barrier destruction, changes in expression of

TJs, and activation of ERK1/2 and NF-kB were abrogated by inhibitor of ERK1/2 and NF-«xB.

Conclusion: HIV-I Tat protein causes increases in the paracellular permeability of RPE cells in vitro
concomitant with changes in expression of certain transmembrane proteins associated with the tight
junction. The effects of HIV-I Tat on barrier function of the RPE may be mediated by ERK MAPK and NF-
kB activation, which may represent potential targets for novel therapeutic approaches for the retinopathy

induced by HIV infection.
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Background

Serious ophthalmic diseases can cause blindness in the
absence of prompt diagnosis and therapy. These diseases
often result from opportunistic infections and are com-
mon in HIV-infected patients [1]. The exact mechanism
underlying the HIV invasion of ocular tissues is still
poorly understood.

HIV-1 transactivator Tat protein (HIV-1 Tat) plays a piv-
otal role in both the HIV-1 replication cycle and the
pathogenesis of HIV-1 infection. HIV-1 Tat modulates the
expression of several cellular genes and triggers the activa-
tion of certain signal transduction pathways and tran-
scription factors, suggesting a complex role in HIV-1
infection [2-5]. Extensive data document the pleiotropic
effects of Tat protein in many host cells, particularly in
cells targeted by HIV, and these effects induce the appear-
ance of many systemic complications of AIDS, such as,
HIV-associated dementia, HIV-associated nephropathy,
and HIV-associated adipose redistribution syndrome [6-
8]. Despite the importance of HIV-1 Tat, few reports have
examined its potential role in HIV-associated ocular dis-
eases [1,9].

The retinal pigment epithelium (RPE) lies between the
photoreceptors of the neurosensory retina and the choroi-
dal capillary bed, and depends on tight junctions (TJs) to
forms a highly selective and regulateable barrier between
the retina and choroid, called the outer blood-retina bar-
rier (0BRB), that is responsible for the transport of nutri-
ents and ions between photoreceptors and the
choriocapillaris, and is very important for maintaining the
normal vision [10]. The TJ, which is the most apical com-
ponent of the junctional complex, represents the ana-
tomic substrate of the oBRB. The composition of TJs,
which has been unraveled over the past few years, is dom-
inated by two main transmembrane proteins, occludin
and claudins, which appear to be important to the tissue-
and cell-specific function of TJs [11,12].

HIV-1 Tat protein can alter the expression of specific TJ
proteins in brain microvascular endothelial cells
(BMECs), which disturb the blood-brain barrier (BBB)
and contributes to HIV trafficking into the brain [13,14].
Recently, it was demonstrated that the transport and per-
meation characteristics of BBB and oBRB, which is formed
by the intercellular TJs of the RPE, are surprisingly similar
[15]. The RPE is also one of the cells targeted by HIV, and
the junctional integrity of the RPE can be affected by many
factors [16-20]. We therefore hypothesized that HIV-1 Tat
can alter the protein expression of TJs in the RPE, and
thereby disturb the barrier function of o0BRB, which may
be one of the mechanisms for HIV-1 entry into the eyes.

http://www.biomedcentral.com/1471-2334/8/77

The objectives of the present study were (1) to characterize
the effects of HIV-1 Tat protein on the barrier function of
cultured RPE cells, through transepithelial electrical resist-
ance (TER) and permeability to fluorescence sodium, (2)
to determine the differential regulation of transmembrane
protein expression associated with the changes in barrier
function, and (3) to determine the intracellular pathways
that participate in changes in RPE induced by HIV-1 Tat.

Methods

Reagent

Dulbecco's modified Eagle's medium/High Glucose
(DMEM), fetal bovine serum (FBS), penicillin and strep-
tomycin were purchased from Hyclone (Logan, UT). Rab-
bit anti-occludin, claudin-1, claudin-2, and claudin-3,
and mouse anti-claudin-4 were obtained from Zymed
Laboratories (San Francisco, CA). The monoclonal anti-
body (mAb) to phospho-ERK was purchased from Cell
Signaling Technology (Beverly, MA). The rabbit anti-ERK,
used as controls for equal loading, was obtained from
Santa Cruz Biotechnology (Santa Cruz, CA). Goat anti-
rabbit and mouse IgG with a FITC conjugate were
obtained from Sigma (St. Louis, MO). PD98059 was pur-
chased from Calbiochem (San Diego, CA) and made up
with dimethyl sulfoxide (DMSO) at 1 mM stock solution.
Pyrrolidien dithiocarbamate (PDTC) was purchased from
Sigma and dissolved in PBS. NE-PER® Nuclear and Cyto-
plasmic Extraction Reagents was purchased from Pierce
(Rockford, IL). Sodium fluorescein (MW: 376 Da) was
purchased from Amersco (Solon, OH).

Cell culture

The human RPE D407 cell line was generously provided
by Dr Guo Zhongmin (Center of Experimental Animal
Sun Yat-sen University). Cells were cultured in DMEM
with high glucose (4.5 g/1), containing 10% FBS, penicil-
lin (100 U/ml) and streptomycin (100 U/ml). The
medium was changed every 2 days, and cells were subcul-
tured by trypsinization every 4 days at a split of 1:5.

Tat protein preparation and treatment

The 86-amino acid isoform of the Tat protein was
obtained from The National Institutes of Health AIDS
Reagent Program (Rockville, MD). It was reconstituted in
phosphate-buffered saline (PBS) containing 1 mg/ml
bovine serum albumin (BSA) and 0.1 mM dithiothreitol
and deaerated by bubbling with helium. The protein was
stored at -80°C in the dark before use. The specificity of
Tat-mediated effects was assessed by treating cells with
heat inactivated Tat prepared by incubating the protein at
over 85 °C for 30 min. Because Tat binds strongly to serum
proteins, all experiments were carried out in serum-free
media. D407 cells remained healthy and viable under
these experimental conditions. The Tat treatment in the
present study involved exposing D407 cells exposure to
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100 nM Tat for 24 hours, which has frequently been used
in previous in vitro studies [21,22].

Cell viability assay

Cells were grown in 96-well plates at a density of 1 x 104
cells/well. After the indicated treatments, MTT(3-[4,5-
dimethylthiozol-2-yl]-2,5-diphenyl tetrazoliumbromide)
was added at 5 mg/ml to each well for 4 hours, after which
the culture medium was removed and 150 pl of DMSO
was added to each well. The absorbance was measured at
490 nm using a multifunctional microplate reader
(POLARstar, OPTIMA, Germany).

Measurement of TER

Transparent Millicell-CM filters (diameter of 12 mm, pore
size of 0.4 pum, effective membrane area 0.6 cm2, mem-
brane material: hydrophilic PTFE (Millipore, Bedford,
MA) were coated with 50 pl of a rat-tail collagen I/ethanol
mixture (Sigma) and left to dry before cells were subcul-
tured. D407 cells were seeded at a density of 104 cells/filter
on the filters was supported by 24-well culture plates. The
volumes on the apical and basolateral side (inside and
outside of the membrane) were 400 pl and 600 pl, respec-
tively. The fluid pressure was the same in the two cham-
bers.

The cultures were incubated in a humidified atmosphere
(37°C, 5% CO,). The medium was changed on the fol-
lowing day, and subsequently changed every second day
for the duration of the experiment. Phase contrast micro-
scopy revealed that cells reached confluence at day 3, and
then serum concentration of the culture medium was
reduced to 1%. From 2 days after seeding, the TER was
measured by an epithelial voltohmeter (EVOM, World
Percision Instruments, USA) every other day to monitor
the time course of the TER. We began the indicated treat-
ments at day 10, the culture medium in control group also
changed into serum free, and measured the TER at 1, 2, 3,
12, 24, 48, and 72 hours after exposure to 100 nM Tat.

Permeability assay

The paracellular permeability of RPE cells was determined
by measuring the apical-to-basolateral movement of
sodium fluorescein (MW: 376 Da), using a slightly modi-

Table I: Primer sequence used for real time RT-PCR
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fied version of the technique of Hartnett et al [23]. Briefly,
to assess the fluid flux across the monolayer, sodium flu-
orescein mixed in DMEM (25 mg/ml sodium fluorescein)
was added to the apical compartment of the inserts after
the indicated treatment. 100 ul of fluid was collected from
the basolateral compartment of each filter at 20, 40 and
60 min after adding sodium fluorescein, and then trans-
ported to 96-well black culture plates (Corning Costar,
Cambridge, MA) to measure the fluorescence. The same
volume of the appropriate medium was added to replace
the medium removed. The fluorescence was measured by
a multifunctional microplate reader (emission: 525 nm,
excitation: 440 nm). The basolateral-to-total fluorescence
ratio was determined for each group, and expressed as a
percentage, with larger percentage indicating greater per-
meability. The fluorescence of DMEM mixed with 25 mg/
ml sodium fluorescein was taken as the total fluorescence.

Real-time reverse-transcriptase polymerase chain reaction
Total RNA was isolated with TRIzol reagent. Real-time
quantitative reverse-transcriptase polymerase chain reac-
tion with SYBR (real-time qRT-PCR) was performed with
Super-Script™ III Platinum1 Two-Step qRT-PCR kit (Invit-
rogen, Carlsbad, CA) on ABI PRISM 7000 sequence detec-
tion PCR system (Applied Biosystems, Foster City, CA)
according to the manufacturer's protocol. Primers for
human occludin, claudin-1, -2, -3, -4, and -5, and glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) were
designed with Beacon Designer v 4.0 (Premier Biosoft,
USA) (see Table 1 for the sequences). GAPDH was used as
an internal control. The expression levels of occludin and
claudin-1 to -4 are presented relative to those in the con-
trol group. To validate our real-time qRT-PCR protocol,
melting-curve analysis was performed to check for the
absence of primer dimers.

Western blot analysis

Cells were lysed with 200 pl of ice-cold lysis buffer (50
mM HEPES, 5 mM EDTA, 100 mM NaCl, 1% Triton X-
100; pH 4) in the presence of a protease inhibitor cocktail
(Roche, Germany). Protein concentrations were deter-
mined with the BCA protein assay kit (Pierce, Rockford,
IL). Protein samples (20 ng) were resolved on 10% SDS-
PAGE gels and transferred onto a polyvinylidene difluo-

Gene Accession number upper lower

Occludin NM_002538 5' CATTGCCATCTTTGCCTGTG3' 5' AGCCATAACCATAGCCATAGC3'
Claudinl NM_021101 5' CAGGCTACGACCGCAAC3' 5' CAGGCTACGCAAGGACS'
Claudin2 NM_020384 5' CCCAAACCCACTAATCACATC3' 5' GCCACTGCTTCTCCTTCC3'
Claudin3 NM_001306 5' CAGGCTACGACCGCAAGGACS 5' GGTGGTGGTGGTGGTGTTGG3'
Claudin4 NM_001305 5' GGCGTGGTGTTCCTGTTG3' 5' AGCGGATTGTAGAAGTCTTGG3'
Claudin5 NM_003277 5' TACCGCAGGAAGAGGAGCAGS' 5' GCCCGAAGCAGCCAATCC3'
GAPDH NM_002046 5' TCTCTGCTCCTCCTGTTC3' 5' CTCCGACCTTCACCTTCC3'
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ride (PVDF) membrane (Millipore, Bedford, MA) in a
semi-dry system (Bio-Rad, Hercules, CA). The membranes
were incubated with specific antibodies against occludin
(1:500), claudin-1 (1:200), claudin-2 (1:100), claudin-3
(1:200), claudin-4 (1:100), and B-actin (1:500). B-actin
was used as a loading control in experiments of cell-asso-
ciated proteins. Chemiluminescence and visualized by
exposure to X-ray films. Optical densities of the bands
were scanned and quantified with the Gel Doc 2000 (Bio-
Rad). Data were normalized against those of the corre-
sponding B-actin, and results were expressed as percent-
ages relative to controls.

To examine ERK activity, cells were extracted with lysis
buffer containing phosphatase and protease inhibitors.
Equal amounts of total proteins were boiled in sample
buffer and separated by SDS-PAGE. After immunoblotting
with an ERK phospho-specific antibody (1:100), immu-
noreactive bands were visualized as previously described.

Immunofluorescence microscopy

Confluent D407 cells were exposed to 100 nM HIV-1 Tat
for 24 hours; controls consisted of untreated cells and
cells exposed to 100 nM heat-inactivated Tat for 24 hours.
Controls and Tat-treated cells were washed with PBS, fixed
for 30 min with 4% paraformaldehyde, permeabilized
with 1% Triton-PBS (10 min at room temperature), and
blocked with 2% BSA-PBS (1 hour at room temperature).
Cells were then incubated with primary antibodies over-
night at the following concentrations: anti-occludin (10
mg/ml), anti-claudin-1 (2 mg/ml), anti-claudin-2 (4 mg/
ml), anti-claudin-3(4 mg/ml), anti-claudin-4(4 mg/ml).
Cells were rinsed with 1% BSA-PBS and incubated for 1
hour with a fluorescein-conjugated secondary antibody
(diluted 1:50 in 1% BSA-PBS). Cells were then rinsed
three times with PBS, mounted in Vectashield medium,
sealed, and analyzed by confocal microscopy (TCS NT,
Leica). For occludin immunofluorescence, cells were pre-
extracted according manufactuer's protocol before fixa-
tion and permeabilization.

NF-xB DNA binding activity

Nuclear proteins were isolated by NE-PER® Nuclear and
Cytoplasmic Extraction Reagents according to the proto-
cols supplied by the manufacturer. The DNA binding
activity of NF-xB p50 and p65 subunits was assayed by
NF-kB Transcription Factor Assay Chemiluminescent kit
(Chemicon, Temecula, CA). Briefly, 2 ug nuclear extracts
were incubated with the capture probes, double stranded
bitinylated oligonucleotide containing the flanked DNA
binding consensus sequence for NF-xB (5'-GGGACTT-
TCC-3'"). The mixture was then transferred to a streptavi-
din-coated plate. The bound NF-xB transcription factor
subunits p50 and p65 were detected with specific primary
antibodies. A horseradish peroxidase-conjugated second-
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ary antibody was then used for chemiluminescent detec-
tion. The relative light unit (RLU) values were measured
using a LUMIstar Omega microplate reader (IMGEN,
Washington ST).

Statistical Analysis

Differences between groups were assessed by using one-
way ANOVA with the SPSS 13.0 program (SPSS, Chicago,
IL), with a probalility value of P < 0.05 considered indic-
ative of statistically significance.

Results

MTT Cell Viability Studies

To exclude the possibility that changes in the barrier func-
tion resulted from cell death and the subsequent forma-
tion of holes in the monolayer, we tested the cytotoxic
effects of 100 nM Tat on D407 cells. As shown in Figure 1,
the average absorbance at 490 nm did not differ signifi-
cantly between the control and treatment groups, indicat-
ing that the exposing cells to 100 nM Tat for 24~72 hours
did not decrease cell viability relative to controls.

HIV-1 Tat Induces destruction of barrier function in RPE

The TER appeared to be somewhat affected by the serum,
so we reduce the serum concentration of the medium to
1% from day 3 when cells reached confluence, and meas-
ured the TER every other day. The TER of D407 cells grad-
ually increased on the subsequent days, peaking at day 8
and then remaining stable for 1 week (Figure 2a). Mennel
[24] suggested that obtaining stable values on 2 subse-

124 —Control mm Hi-Tat mm100nM Tat
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Figure |

Effect of 100 nM Tat on the viability of D407 cells. The
cells were incubated with 100 nM Tat and heat inactivated
Tat for 24, 48, and 72 hours. Determination of the cell viabil-
ity by the MTT assay indicated no significant differences
between the groups (P > 0.05). Values shown represent the
mean * S.D. of four independent assays or experiments.
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Figure 2

Effect of Tat on the Transepithelial Electrical Resist-
ance in D407 cells. (a): From 2 days after seeding, the TER
was measured every other day to monitor the time course of
the TER of D407 cells. The TER gradually increased, peaking
at day 8 and then remaining stable for | week. Values shown
represent the mean + S.D. of three independent assays or
experiments. (b): The effects of 100 nM the Tat on TER of
D407 cells were measured at |, 2, 3, 12, 24, 48, and 72 hours
after stimulation. The TER values were stable in the control
group (LJ) and heat-inactivated group (A) throughout the
experiment, with no significant differences between them.
However, treatment with 100 nM Tat(lM) induced a signifi-
cant decrease in the TER beginning at 3 hours, with a further
decrease at |12 hours and a maximum effect at 24 hours,
which was maintained to 72 hours. Values shown represent
the mean + S.D. of three independent assays or experiments.
(*P<0.05 #P<0.0l).

quent days indicated the formation of a tightly coupled
cell monolayer, and hence we decided to begin treating
the cells with 100 nM Tat from day 10.

The TER of D407 cells was measured at 1, 2, 3, 12, 24, 48,
and 72 hours after treatment with 100 nM Tat. A reduc-
tion in the TER was first evident after 3 hours of treatment
(P < 0.05). Continuous culturing of cells for longer peri-
ods further reduced the TER, with a maximum effect after
24 hours of treatment (P < 0.01) that was maintained to

http://www.biomedcentral.com/1471-2334/8/77
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Figure 3

Effect of Tat on RPE paracellular permeability. Verti-
cal axis shows the basolateral-to-fluorescence ratio and the
horizontal axis shows the time after the addition of the mol-
ecule. Data are mean and S.D. Values shown represent the
mean + S.D. of three independent assays or experiments.
Control: D407 cells incubated with standard medium; 100
nM Tat: D407 cells treated with medium containing 100 nM
HIV-1 Tat protein for 24 hours. (*P < 0.05).

72 hours. The TER of control groups (untreated and
treated with Hi-Tat) remained unchanged throughout the
experiment. (Figure 2b)

The permeability to sodium fluorescein, which has a low
molecular weight, is regarded as a reliable marker of para-
cellular permeation. The permeability values of cells as
measured at 20, 40, and 60 min after treatment with 100
nM Tat for 24 hours were all significantly higher than
those of cells in the standard medium and the Hi-Tat con-
tained medium, indicating that treating D407 cells with
100 nM Tat for 24 hours induced a loss of junctional
integrity (Figure 3).

HIV-1 Tat Induces Genes and Proteins Expression of Tjs in
RPE

The real-time quantitative reverse-transcriptase polymer-
ase chain reaction demonstrated that occludin and clau-
din-1 to -4 were expressed in D407 cells, whereas there
was no expression of claudin-5, similar to those from
studies on claudins in another RPE cell line ARPE19 [25].

The expressions of claudin-1, -3, and -4 genes were down-
regulated in D407 cells treated with 100 nM Tat, whereas
that of the claudin-2 gene was upregulated. However, the
expression of the occludin gene did not differ between
cells treated with 100 nM Tat and control cells. (Figure 4)

Bands were evident at approximately 65 and 23-kDa for

occludin and claudins(1-4), respectively (Figure 5a).

Page 5 of 11

(page number not for citation purposes)



BMC Infectious Diseases 2008, 8:77

] Control

44 [JHi-Tat

R 100nM Tat

2 Tat+PD98059
3 Tat+PDTC

mRNA Expression
(Fold of control)

Figure 4

Effect of Tat on the mRNA expression of tight junc-
tion proteins. D407 were treated in 100 nM HIV-| Tat for
24 h with or without pretreatment with the NF-kB inhibitor
PDTC (100 uM) and the ERK inhibitor PD98059 (30 uM) for
1.5 h. The relative expression level of each gene is expressed
as fold induction compared with control group. Data are
mean and S.D. Values shown represent the mean + S.D. of
three independent assays or experiments. The genes exam-
ined are shown on the horizontal-axis. (*P < 0.05, #P < 0.01
vs. control; $P < 0.05, 4P < 0.0l vs. HIV-I Tat protein alone).

Consistent with the qRT-PCR observations, Tat (100 nM)
reduced the expression of claudin-1, -3, and -4, increased
that of the claudin-2, and had no effect on that of the
occludin (Figure 5b).

The results of immunofluorescence microscopy are shown
in Figure 6. Junctional staining of each peptide was
observed both in control cells and in cultures treated with
Hi-Tat and 100 nM Tat. As for the qRT-PCR and Western
blotting data, 100 nM Tat reduced the amount of staining
of claudin-1, -3, and -4 (Figure 6a, b, ¢), increased that of
claudin-2 (Figure 6d), and had no effect on the staining
pattern of occludin (Figure Ge).

HIV-1 Tat Induces ERK Phosphorylation and NF-xB DNA
binding activity in RPE

To determine the intracellular pathways that participate in
changes in RPE induced by HIV-1 Tat, we examined
whether the phosphorylation of ERK was induced in our
cellular models upon treatment with HIV-1 Tat. D407
cells, starved for 24 hours in serum-free medium, were
stimulated with 100 nM Tat for different time durations.
As shown in Figure 7, 100 nM Tat was able to induce a
large increase in ERK1/2 phosphorylation levels after 5
min of culture. The ERK1/2 activation levels remained at
the same levels for 15 min, and began to decrease at 30
min.
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Effect of Tat on the expression of tight junction pro-
teins. (a): D407 were treated in 100 nM HIV-I Tat for 24 h
with or without pretreatment with the PDTC (100 nM) and
PD98059 (30 uM) for 1.5 h. Equal loading of protein was
monitored using a specific antibody to -actin.(b): Results of
scanning densitometry of the exposed films. The relative
expression level of each protein is expressed as percentage
compared with control group. Values shown represent the
mean * S.D. of three independent assays or experiments.
The proteins examined are shown on the horizontal-axis. (*P
< 0.05 vs. control; $P < 0.05 vs. HIV-1 Tat protein alone).

Thereafter, we investigated whether the NF-«kB transcrip-
tional activity was associated with the effects induced by
HIV-1 Tat protein, we examined NF-kB DNA binding
activity after exposing D407 to 100 nM Tat for 1, 2, and 4
h. It was clearly shown that HIV-1 Tat protein significantly
induced NF-kB DNA binding activity compared with con-
trol in a time-dependent fashion. The analysis of RLU
showed that NF-xB p65 DNA binding activity induced by
HIV-1 Tat protein at 4 h was significantly increased com-
pared with the controls. In contrast, no significant differ-
ence was observed for the activation of the p50 subunit

(Figure 8).
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e
Control Hi-Tat 100nM Tat
Figure 6
Immunofluorescent staining of tight junction pro-
teins in RPE. D407 were treated with 100 nM HIV-I Tat
and Hi-Tat for 24 h. Occludin and claudin-| to -4 expressions
were determined by immunofluorescence microscopy. (a)

Occludin, (b) claudin-1, (c) claudin-2, (d) claudin-3, and (e)
claudin-4. Bar, 25 um.

PD98059 and PDTC Inhibit the Destruction of Barrier and
Expression of TJs in RPE Induced by HIV-I Tat

To confirm whether the ERK1/2 and NF-«B activation was
involved in the destruction of the barrier and expression
of TJs in RPE induced by HIV-1 Tat protein, we pretreated
D407 with the ERK specific inhibitor PD98059 and NF-xB
inhibitor PDTC before stimulation with HIV-1 Tat pro-
tein. D407 cells were incubated with PD98059 (30 uM) or
PDTC (100 uM) for 1.5 h and then were treated with HIV-
1 Tat protein (100 nM) for 24 hours. The changes in bar-
rier function and expression of TJs were detected as previ-
ously described. The results showed that both PDTC and

http://www.biomedcentral.com/1471-2334/8/77
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Figure 7

Effects of HIV-1 Tat on ERK Phosphorylation in RPE.
(2): ERK1/2 phosphorylation was determined using an anti-
body specific to phospho-ERK /2 after incubation of D407
with 100 nM HIV - Tat and Hi-Tat for various times, as indi-
cated. Equal loading of protein was monitored using a specific
antibody to total ERK. (b): Results of scanning densitometry
of the exposed films. Data are expressed as arbitrary units of
intensity relative to the control value, and are the mean *
S.D. of 3 independent experiments (*P < 0.05).

PD98059 pretreatment abrogated the destruction of bar-
rier and expression of TJs in RPE by HIV-1 Tat protein
compared with HIV-1 Tat protein-alone (Figure 4, 5, 9).
These data further suggest that both NF-xB and p38 MAPK
may be involved in the regulation of HIV-1 Tat protein-
induced biological effects.

PDTC and PD98059 Inhibit NF-xB DNA Binding Activity
Induced by HIV-I Tat

To determine the relationship between NF-kB and ERK
MAPK pathways in the regulation of HIV-1 Tat protein-
induced effects, we used PDTC (100 pM) and PD98059
(30 uM) to pretreat the D407 for 1.5 h and then exposed
the cells to 100 nM HIV-1 Tat for 4 h. The results showed
that PDTC and PD98059 pretreatment noticeably
decreased HIV-1 Tat-induced NF-kB DNA binding activity
compared with HIV-1 Tat protein treatment alone (Figure
8).

Discussion

Ocular manifestations are common in patients with AIDS.
Many HIV patients suffer from decreased visual acuity,
which may severely affect the quality of their lives. The
mechanisms of HIV-1 entry into the eyes and the subse-
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Effects of HIV-1 Tat on NF-xB DNA binding activity
in in RPE. D407 were treated with HIV-1 Tat protein (100
nM) for [, 2, and 4 h. Nuclear extracts were prepared. DNA
binding activity was determined using 2 g of nuclear protein
as described in MATERIALS AND METHODS. To determine
the effects of PDTC and SB-203580 on HIV-1 Tat protein
induced NF-«kB activation in RPE, D407 were treated in 100
nM HIV-I Tat and Hi-Tat for 4 h with or without pretreat-
ment with the PDTC (100 uM) and PD98059 (30 uM) for 1.5
h. Values shown represent the mean * S.D. of three inde-
pendent assays or experiments (*P < 0.05 vs. control; § P <
0.05 vs. HIV-1 Tat protein alone).

quent destruction of the homeostasis of the intraocular
microenvironment remain obscure. Since most published
research about the retina of HIV patients has focused on
opportunistic infections and the resulting retinitis [26],
few studies have investigated the direct effects of RPE.

There is increasing evidences of multifunctional effects of
Tat that depends on the cell type and the degree of cellular
maturation. We postulated that HIV-1 Tat protein could
alter the expression of specific tight-junction proteins and
disturb the blood retinal barrier, and contributes to HIV
trafficking into the eyes.

The D407 is a spontaneously arising RPE cell line, which
retains many of the metabolic and morphologic character-
istics of RPE cells in vivo [27,28]. D407 cells possess inter-
cellular junctional complexes, and have been used to
model the oBRB [29]. We therefore used D407 cells in the
present study to test the above-mentioned hypothesis.

The results from our experiments indicate that treatment
with 100 nM Tat, which does not cause the cell death, dis-
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Figure 9

Effects of PDTC and PD98059 on HIV-I Tat induce
destruction of barrier in RPE. D407 were treated in 100
nM HIV-I Tat and Hi-Tat for 24 h with or without pretreat-
ment with the PDTC (100 uM) and PD98059 (30 uM) for 1.5
h. The TER and paracellular permeability were determined as
previously described. Data are the mean % S.D. of 3 inde-
pendent experiments (*P < 0.05 vs. control; § P < 0.05 vs.
HIV-1 Tat protein alone).

turbs the barrier function of the oBRB. In the presence of
AIDS, HIV-1 Tat arriving at the choroidal capillary bed,
can interact with the RPE and destroy the barrier function
of oBRB. Because the choroid vasculature is fenestrated
and abundant in blood, the destruction of 0BRB would
expose the retina to immune cells such as monocytes,
macrophages, and dendritic cells. We therefore suppose
that HIV trafficking into the eyes is also mediated through
a "Trojan horse" mechanism, in which HIV-infected circu-
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lating monocytes enter the eyes through breaches of the
OoBRB, as in the brain and BBB [21].

It has been verified that anomalies in the expression and
distribution of occludin and claudins are responsible for
the occurrence and development of many disease. Clau-
dins are localized to the site of close membrane apposi-
tion within TJs. They are detected in both epithelial and
endothelial cells in all tissues that contain TJs, and form a
complex with occludin and junctional adhesion mole-
cules [30,31]. In the present study, HIV-1 Tat-induced
decreases in expressions of claudin-1, 3, 4 and significant
increases in claudin-2 were detected in D407 cells. They
were all consistent with the decrease in the TER and the
increased permeability. Although we failed to show the
changes in occludin expression in the present study, we
also found the decreases in expression of ZO-1 in another
experiment (data not shown). Moreover the Tat-related
mRNA and protein variation of claudins is relatively low,
so we cannot exclude the possibility that other junctional
proteins are also modulated by Tat and contribute to the
observed effects on barrier function. The relationship
between TJs and the oBRB during HIV infection still need
to be elucidated.

It was reported that Tat can induce oxidative stress and
excitotoxicity in the RPE and brain endothelial cells
[22,32], indicating that oxidative stress plays a major role
in the HIV-1 Tat-mediated retinal dysfunction associated
with AIDS retinopathy. H,0, was shown to influence the
expression of TJs in cultured RPE in a similar fashion as
HIV-1 Tat (unpublished data). Numerous studies have
suggested that HIV-1 Tat can trigger activation of redox-
regulated cell signaling pathways, of which ERK MAPK
could alter the composition of claudins within the TJ] com-
plex and change TJ permeability rapidly [33-35]. We fur-
ther determined whether these pathways are involved in
the regulation of claudins expression that was observed in
the present study. Our study's results have shown clearly
that the activation of ERK1/2 is important for the destruc-
tion of barrier and expression of TJs in HIV-1 Tat treated
RPE. First, HIV-1 Tat has induced the phosphorylation of
ERK1/2. Second, PD98059, a specific inhibitor of MEK-
ERK inhibited HIV-1 Tat-induced changes in barrier and
expression of TJs. But as the ERK1/2 activation kinetics
were not studied in untreated control cells, the global
effects of HIV-1 Tat on ERK1/2 activation dynamics in RPE
are difficult to compare.

NF-kB is one of the transcription factors that may be con-
trolled by the redox status of the cells [36]. Activation of
NF-«B is controlled by a family of inhibitors. Upon stim-
ulation, after the active complex p65/p50 of NF-«xB is
released from the inhibitor, and translocate from the cyto-
plasm to the nucleus, where they bind target genes and

http://www.biomedcentral.com/1471-2334/8/77

stimulate transcription. Although exogenous HIV-1 Tat
protein is known to activate NF-xB in immune cells and
endothelial cells, it is not well known whether exogenous
HIV-1 Tat protein is able to activate the NF-xB pathway in
epithelial cells [37]. The results showed an increase in NF-
kB DNA binding activity in nuclear extracts from HIV-1
Tat treated RPE. The specific NF-«B inhibitor, PDTC, also
inhibited the changes in barrier function, expression of
TJs, and the activation of NF-xB induced by HIV-1 Tat.
These indicated that the effects of HIV-1 Tat on barrier
function of RPE were NF-kB dependent.

Our study's results showed that both NF-xB and ERK1/2
MAPK were involved in the effects of HIV-1 Tat on the bar-
rier function of RPE. Generally, NF-«B is not thought to be
a transcription factor activated by ERK MAPK [38]. How-
ever, several reports indicate that ERK MAPK is also an
important activator of NF-kB [39,40]. Our study particu-
larly shows that the NF-xB DNA binding activity induced
by HIV-1 Tat was abolished by the PD98059, a specific
inhibitor of ERK. This implies that NF-kB acts as a down-
stream substrate of ERK MAPK during barrier destruction
in RPE induced by HIV-1 Tat.

Conclusion

The present study is the first to provide evidence that HIV-
1 Tat induced changes in the claudin composition of TJs,
thereby, contributing to the destruction of the barrier
function of the RPE and eventually inducing the patho-
genesis of HIV-related ocular diseases. The effects of HIV-
1 Tat on the barrier function of the RPE may be mediated
by ERK MAPK and NF-kB activation, which may represent
potential targets for novel therapeutic approaches for the
retinopathy induced by HIV infection. But it still needs to
be confirmed in human primary RPE cells or in vivo situa-
tion.
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