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Abstract

Background: While a new generation of computational statistics algorithms and availability of data streams raises
the potential for recurrently regrounding dynamic models with incoming observations, the effectiveness of such
arrangements can be highly subject to specifics of the configuration (e.g., frequency of sampling and representation
of behaviour change), and there has been little attempt to identify effective configurations.

Methods: Combining dynamic models with particle filtering, we explored a solution focusing on creating quickly
formulated models regrounded automatically and recurrently as new data becomes available. Given a latent
underlying case count, we assumed that observed incident case counts followed a negative binomial distribution. In
accordance with the condensation algorithm, each such observation led to updating of particle weights. We evaluated
the effectiveness of various particle filtering configurations against each other and against an approach without
particle filtering according to the accuracy of the model in predicting future prevalence, given data to a certain point
and a norm-based discrepancy metric. We examined the effectiveness of particle filtering under varying times
between observations, negative binomial dispersion parameters, and rates with which the contact rate could evolve.

Results: We observed that more frequent observations of empirical data yielded super-linearly improved accuracy in
model predictions. We further found that for the data studied here, the most favourable assumptions to make
regarding the parameters associated with the negative binomial distribution and changes in contact rate were robust
across observation frequency and the observation point in the outbreak.

Conclusion: Combining dynamic models with particle filtering can perform well in projecting future evolution of an
outbreak. Most importantly, the remarkable improvements in predictive accuracy resulting from more frequent
sampling suggest that investments to achieve efficient reporting mechanisms may be more than paid back by
improved planning capacity. The robustness of the results on particle filter configuration in this case study suggests
that it may be possible to formulate effective standard guidelines and regularized approaches for such techniques in
particular epidemiological contexts. Most importantly, the work tentatively suggests potential for health decision
makers to secure strong guidance when anticipating outbreak evolution for emerging infectious diseases by
combining even very rough models with particle filtering method.
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Background
According to World Health Organization (WHO), sea-
sonal influenza viruses cause 3 to 5 million cases of severe
illness, with about 250,000 to 500,000 deaths each year,
with emerging-strains sometimes significantly increasing
this burden. An important example of this was high-
burden emergence of pandemic influenza A (H1N1) dur-
ing the 2009–2010 influenza season. Vaccination and
intervention strategies such as school closures for early
mitigation of pandemic influenza spread may reduce
severe complications and deaths [1]. Key concerns dur-
ing an outbreak include staffing requirements for imple-
mentation of a pandemic response, clinical resource
constraints [2], managing individuals’ expectations and
behaviors, which often relate their risk perception [3],
and mobilization of health resources [4]. Rapid or ide-
ally real-time reporting of surveillance data provide a
clear picture of what has happened, but fail to pro-
vide clarity on how the epidemic will evolve. Simula-
tion modeling can be an important tool to anticipate
what is most likely to happen in the near future, to ask
questions concerning interventions and identify desirable
policies.
Mathematical models describing the dynamic of epi-

demiological infections can be useful for projection
purposes [5–9], but often the fundamental challenge in
leveraging models for emerging communicable diseases
and strains is that there is limited epidemiological knowl-
edge regarding the natural history of infection and the
values needed for model parameters [10]. While a well-
formulated model can be useful for planning, often the
knowledge needed to build that model is lacking at the
time when it is the most urgently needed. In this situa-
tion, a precisely calibrated and highly tuned model can
play an important role, but is often infeasible to build in
a time compatible with planning needs. Even for mod-
els of endemic infections such as seasonal influenza in
which refined estimates of parameter values and under-
standing of natural history are available, model predic-
tions secured early in an outbreak inevitably diverge from
observations [11–13]. This reflects the fact that all mod-
els are simplifications (and thus inevitably omit factors).
In addition, stochastics are involved in real-world sys-
tems, which depend on unpredictable or hard-to-predict
factors such as shifting vaccine attitudes and risk per-
ception that can impact contact patterns [14–16], as
well as the vagaries of transmission and the health sys-
tem response. This divergence is made more likely by
the fact that many such factors—including changes in
human contact patterns—are believed to play a substan-
tial role in disease transmissions [15–17] and are often
not captured in models. Statistical filtering and estima-
tion methods for dynamic models, such as Sequential
Monte Carlo (SMC) and Markov Chain Monte Carlo

(MCMC) methods, provide an attractive tool to not only
create model predictions based on where we are right
now, but to use empirical observations from continu-
ing surveillance to reground that model on an ongoing
basis [12, 18–22].
Among estimation algorithms, Kalman filtering is a long

and heavily used tool for creating estimates based on
consensus of empirical data and model predictions using
Maximum Likelihood Estimation (MLE) [23–27]. How-
ever, it is hampered by stiff distributional assumptions
regarding process and measurement error. The Kalman
filter’s reliance on gaussian assumption and MLE further
limits its accuracy, particularly in the context of non-linear
systems. The reliance of Kalman filtering on linearization
of nonlinear distributions both raises strong challenges
for accurate state estimation in the context of infrequent
observations and limits the applicability of such models
to an important but circumscribed subset of transmission
models for which linearization is possible [28].
As a SMC, particle filtering offers similar overall

types of benefits as Kalman filtering while relaxing such
constraints. Particle filtering deals with less restrictive
assumptions concerning the noise and process model,
and samples from a joint distribution of state trajectories
rather than conforming to a MLE approach. This method
[29] samples from the posterior distribution of model
state trajectories, combining empirical data and model
dynamics. Key mechanics of particle filtering are drawn
from the “importance sampling” method. With impor-
tance sampling, we sample from a particular distribution
from which sampling is difficult (target distribution) in
a two-phased approach in which we first draw weighted
samples from an alternative distribution (importance pro-
posal distribution) that retains the major properties of the
target distribution, and then sample from those weighted
samples with a probability proportional to their weight.
Similar to importance sampling, in a particle filter, sam-
pling is performed from the particles based on their
weights. When new empirical data arrive, the filter fur-
ther updates the weights to reflect the fitness of particles
to these observations (as quantified by the ratio of the tar-
get distribution to the proposal distribution). The method
that we use here to update the weight of particles is
based on the “condensation algorithm” [30, 31], in which
the weight of each particle is updated at each observa-
tion time by multiplying it by the likelihood of observing
the observed data given the state of that particle at that
point in time. Following [32], and our previous success in
applying this approach for previous transmission models
[28, 33, 34], we assume that the likelihood distribution is
characterized by a negative binomial distribution:

P(yt|it) =
(
yt + r − 1

yt

)
pyt (1 − p)r (1)
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where p = it
it+r , r is a dispersion parameter, yt is the

model observation (number of incident cases reported for
time t), and it is the incident case count recorded over a
scenario-specific interval.
The objective of this study was to apply particle fil-

tering to predictive models of emerging communicable
diseases, which are often built in the presence of lim-
ited information about underlying parameters. In light of
the growing availability of epidemiological data streams,
we seek here to investigate the impact on model accu-
racy of varying the inter-observation interval, study-
ing the tradeoff between pursuing more frequent but
more noisy sampling and less frequent but more sta-
ble estimates. We further examine the robustness of
the particle filter to different assumptions concerning
behaviour change and assumptions regarding observa-
tional error.

Methods
We formulated a transmission model for an influenza-like
disease in a classic compartmental fashion and used it
with the SMC method of particle filtering.
The dynamic model includes Susceptible (S), Exposed

(E), Infective (I), Removed (R), and Vaccinated (V)
stocks (Fig. 1). It bears noting that the Vaccinated
state represents a transient set of individuals who have
received the vaccine but have not yet attained immu-
nity; upon achieving immunity, such individuals transi-
tion to the Removed state. The aggregate compartmental
state equations describing the model stocks are given as
follows:

Ṡ = −cβ
I

S + E + I + R + V
S − abS (2)

Ė = cβ
I

S + E + I + R + V
S

+ cβ
I

S + E + I + R + V
V − E

τ

(3)

İ = E
τ

− I
μ

(4)

Ṙ = I
μ

+ V
va

(5)

V̇ = abS − V
va

− cβ
I

S + E + I + R + V
V (6)

where c, β , τ , μ, va, a and b represent contacts per
day, probability of infection transmission given exposure,
mean number of days in the latent state, mean number of
days to recovery, mean number of days for immunity to
develop, per capita vaccination rate and vaccine effective-
ness parameter, respectively. Vaccine delivery rates were
obtained from public data made available by Manitoba
Health, Healthy Living and Seniors for the second wave
of pandemic H1N1 and for the period October 6th, 2009
through to January 4th, 2010.
In our model, each particle is associated with a complete

copy of model state, including the state of two evolv-
ing parameters of the model: contact rate (c) and frac-
tion of reported incidents (f )- fI accounts for fractional
actual reporting-, which are associated with evolving state
variables whose values can be sampled by particle filter-
ing. Thus, each particle is associated with a vector of
model states

[
S,E, I,R,V , c, f

]
. Following [28, 32], a nega-

tive binomial distribution is assumed to link the observed
incident case count for a specified time period to the
underlying count of individuals emerging from latency
in the model. We preferred a negative binomial distribu-
tion over the binomial distribution due to the robustness

Fig. 1 Transmission model
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of negative binomial distribution for the particle filter-
ing methodology [28]. It particularly avoids the risk of a
situation in which all particles are associated with zero
weights, causing a singularity during weight renormaliza-
tion. As the model runs and learns from the empirical
data over time, the particles associated with the stocks
that exhibit the greatest fitness - in terms of explaining
the observed data - survive, are replicated and henceforth
evolve independently.
This work builds on previous work by Osgood and Liu

evaluating particle filtering against ground truth from an
agent-based model [28] and our previous work evalu-
ating particle filtering in terms of its ability to predict
future reported real world prevalence in the absence of a
ground truth model [33]. In this work, we seek to examine
the impact on model predictive accuracy of the inter-
observation interval of empirical data, and the robustness
of ranges of plausible values for the dispersion parame-
ter and the parameters associated with the random walk
associated with c and f. Such variations are examined
for a number of different observation points during the
outbreak.
The prediction of particle filtering was evaluated against

empirical data publicly available from Manitoba Health,
Healthy Living and Seniors, which included daily con-
firmed cases of pandemic H1N1 for the period of October
6th, 2009 through January 4th, 2010. To judge the devia-
tion of particle filtering prediction from observations, we
defined the discrepancy metric as the expected value of
the L2 norm of the difference between sampled particles.
By sampling n particles (n = 1000), the discrepancy value
was obtained using the following equation:

discrepancy =

∑Tf
i=T∗+1

(∑n
j=1

(
xPij−xEi

)2
n

)

Tf − T∗ (7)

where xPij is the expected sample associated with sampled
particle j at observation i, xEi is the respective empirical
data at observation i. Tf is the end time being set equal

to 91 and T∗ indicated the time t up to which the parti-
cles’ weights were updated based on observation, where
0 ≤ t ≤ T∗. In other words, the data before and equal to
this timewas taken into account for particle filtering based
on the observed data; after time T∗, particle weights were
no longer updated using the empirical data, no further
resampling occurred, and we evaluated how well particle
filtering predicted the remaining empirical data.

Parameter values
Initial values
We set the initial value of Susceptible and Removed stocks
based on sampling from a truncated normal distribution
instead of considering the initial values as a static number.
Figure 2 gives curves for Susceptible and Removed stocks.
Detailed information about initial values is provided in
Appendix A.

Contacts per unit time (c)
In this work, particle filtering contributes to the estima-
tion of this dynamic parameter over time through particle
selection. This parameter - which carries a non-negative
value - is log transformed, with the logarithm evolving
according to an (unbounded) zero-mean gaussian random
walk with standard deviation (γ ) (8). High values of γ

allow the contact rate to evolve more quickly, while low
values of γ would be associated with assumptions of com-
paratively slow changes in contact rate. In this work, we
examined model behavior over a wide range of γ to iden-
tify appropriate ranges for this important parameter. The
initial value of the stock associated with the logarithm of
c is set to the logarithm of the uniform distribution on
the interval between minimum contacts per day and max-
imum contacts per day which have been considered as 1
and 300, respectively (9).

d(log c)
dt

= N
(
0, γ 2) (8)

(log c)|t=t0 = ln (U(cmin, cmax)) (9)

Fig. 2 Progress of susceptible and removed stocks over time, initializing with a range of values
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Fraction reported incidence
The other stochastic parameter included here represents
the fraction of reported incidents (f ). The fraction of
people who present for care (and are reported to public
health authorities) when emerging from the latent state
is an uncertain value. It is also likely to evolve accord-
ing to risk perception on the part of the population and
provider perception of the importance of reporting. As for
c, we considered (a transformed value of) this parameter
as a state of the model and thus associated each particle
with a value for this parameter. We considered the trans-
formed version of this parameter as evolving according to
a zero-mean gaussian random walk with a standard devia-
tion given by a parameter (η). Since f is a fraction varying
between 0 and 1, the (unbounded) random walk was con-
ducted on the logit of this parameter (10) - which was
itself the aspect of model state - and the initial value of
this state is set to the logit of fraction reported incidence
sampled from a continuous uniform distribution on the
interval between 0 and 1 (11).

d(logit f )
dt

= N
(
0, η2

)
(10)

(logit f )|t=t0 = logit (U(0, 1)) (11)

The other parameters of the model are considered as
static and are shown in Table 1.

Scenarios
We formulated a set of scenarios to explore how the error
associated with particle filtered model predictions would

Table 1 Table showing parameters

Parameter name Notation Value Source Units

Probability of
infection
transmission
given exposure

β 0.06 Expert opinion Unit

Mean time to
recovery

μ 7 [38] Day

Vaccine
effectiveness

b 0.9 [39] Unit

Mean time taken
for antibodies to
develop

va 14 Expert opinion Day

Total population
size

N 1214403 [40] Person

Mean latent time τ Uniformly
distributed
(2, 4)

[38] Day

Vaccination rate a Extracted
from
empirical
vaccinated
percentage

1/Day

respond to changes in the total period for which empiri-
cal data was available to the model (T∗), the frequency of
and degree of aggregation associated with empirical data
observations supplied to the model, contact rate volatility
parameter (γ ) and dispersion parameter (r).

Adequacy of empirical data (T∗)
We examined the impact of particle filter on model pre-
dictive accuracy at various time points during the progres-
sion of an outbreak. This simulated a situation in which a
health authority is partway through an outbreak and can
only take into account data observed until this point when
making predictions for coming weeks. Specifically, in each
scenario, particle filtering used data from the start of the
outbreak up to and equal to a time T∗; the accuracy of par-
ticle filter was then evaluated in predicting the data for all
times afterT∗.We consideredT∗ equal to 35, 42, 49, and 56,
equivalent to predictions made at 5, 6, 7 and 8 weeks into
the outbreak.

Inter-observation aggregation interval/frequency of data
observations
Based on the existence of noise in the clinically observed
data, there is a trade-off between employing more fre-
quently observed (but less aggregate) data and reducing
the noise associated with each data point via observations
that are aggregated over longer periods of time. Employ-
ing more frequent sampling - by using shorter time inter-
vals between observations - yields more numerous data
points, but each such datum will typically exhibit greater
proportional variability. By contrast, employing less fre-
quent sampling during training (thereby aggregating data
over a longer period between observations) leads to fewer
but proportionately less noisy individual data points. To
examine the impact of the frequency of data observations
on filtered model accuracy, we investigated the impact of
aggregating empirical data used in particle filtering obser-
vations at three levels. First, we considered daily data - i.e.,
the number of people clinically confirmed as infected per
day - to update the particles weights during particle fil-
tering. Because the original data source specifies data on
a daily basis, no further aggregation was required for this
case. Second, data was aggregated over three days for the
purposes of particle filtering. In the third and final alterna-
tive setting, the particle filtering used data aggregated on
a weekly basis. It should be emphasized that such aggre-
gation affected only the model observations, and not the
calculation of discrepancies between model results and
empirical data.

Randomwalk standard deviation parameter (γ )
To explore the changes in contact per unit time pat-
terns during an outbreak, and its effect on the spread of
infection, we performed particle filtering using alternative
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values for the contact rate variability parameter (γ ). In
order to explore a broad dynamic range, we examined
parameter values at successive powers of two of the small-
est value: 0.125, 0.25, 0.5, 1, 2, 4 and 8.

Dispersion parameter (r)
The ability of particle filtering to project incident case
counts is sensitive to the dispersion parameter value asso-
ciated with the negative binomial distribution. Increasing
the dispersion parametermakes the negative binomial dis-
tribution tighter, while retaining the same mean value
[35]. We compared the discrepancy resulting from run-
ning the model with alternative values of the dispersion
parameter to developing an understanding as to how this
parameter affects predictive accuracy. To ensure the com-
parability of scenarios when running the models using
three-day and weekly observations, we considered the r
parameter respectively three times and seven times as
great as the r that we used when observing daily data.
This linear scaling of the dispersion parameter r with sam-
pling period reflects the fact that as the inter-observation
interval rises, the likelihood function is operating with
observed values for incident case counts that are cor-
respondingly larger, and the resulting dispersion would
also be expected to scale in the same way. To iden-
tify the way in which model discrepancy changes with
the dispersion parameter, and to identify the disper-
sion parameter that offers the greatest accuracy, we ran
scenarios considering different values of this parameter.
Values 1, 2, 4, 8, 16 and 32 were examined for exper-
iments regarding the daily scenario, while values 3, 6,
12, 24, 48 and 96 were used for three-day experiments
and values 7, 14, 28, 56, 112 and 224 were used for
weekly experiments.

Statistical analysis discrepancy results
To provide an objective assessment of the differences in
discrepancy associated with each of the variables consid-
ered in the above scenarios, we employed Box-Cox mul-
tivariable regression analysis [36]. Box-Cox analysis was

selected rather than traditional multiple linear regression
as the discrepancy results were not normally distributed
and routinely used transformations did not adequately
address the assumptions of normality or homogeneous
variance. The adequacy of empirical data (T∗), inter-
observation interval or frequency of data observations,
contact rate random walk standard deviation parameter
(γ ), and dispersion parameter (r) were evaluated as cat-
egorical variables as none of the parameters appeared
to have a linear association with discrepancy based on
data visualization exercises and there was also interest in
understanding the specific differences among the chosen
parameter values. Differences with p values < 0.05 were
considered statistically significant.

Results
On the basis of running the model using daily, accumu-
lated three days and accumulated weekly empirical data,
particle filtering observing daily data performed consis-
tently and markedly better than while observing three-day
and weekly data. Particle filtering using successively larger
sampling periods yielded super-linearly higher levels of
discrepancy (Fig. 3, Tables 2, 3 and 4). The exact difference
in discrepancy between sampling periods varies by the
amount of data available (as given by T∗), but consistently
the discrepancy extending from particle filtering using
daily data was orders of magnitude smaller than for the
larger sampling periods. Tables showing the discrepancy
of particle filtering predictions in frequency scenarios for
different observation times and γ = 0.125 and γ = 2
are included in Appendix B. The observed super-linear
scaling of error with inter-observation interval was similar
when comparing three day vs. weekly sampling.
After accounting for differences across all of the exam-

ined scenarios for the adequacy of empirical data (T∗),
random walk standard deviation parameter (γ ), and dis-
persion parameter (r), the average discrepancy was sig-
nificantly greater for data collected over three-day (p <

0.001) and seven-day (p < 0.001) intervals than for
daily data.

Fig. 3 Log of discrepancy vs. log of sampling period for different observation times (r = 32, γ= 0.125)
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Table 2 Discrepancy of particle filtering predictions in frequency
scenarios for different observation times and γ = 0.25

Frequency scenarios (γ = 0.25) T∗ = 35 T∗ = 42 T∗ = 49 T∗ = 56

PF using daily data, r = 2 380 225 69 0

PF using three-day data, r = 6 11453 5667 1646 205

PF using weekly data, r = 14 80850 39578 6291 482

PF using daily data, r = 8 384 213 29 0

PF using three-day data, r = 24 14044 6452 1249 79

PF using weekly data, r = 56 104043 42248 5484 447

PF using daily data, r = 32 230 196 45 0

PF using three-day data, r = 96 13617 4701 1096 86

PF using weekly data, r = 224 149164 39232 4945 250

The effect of the standard deviation for the random
walk in the log of the contact rate (γ ) also exhibited
pronounced scaling patterns. Plotting three dimensional
surfaces to represent the change of discrepancy in terms of
this parameter γ and dispersion parameter r, we observed
that for all daily, every-three-day and weekly scenarios, a
γ parameter in the range of 0 to 2 yields markedly reduced
discrepancy compared with γ values above 2 (Figs. 4, 5, 6
and 7). After accounting for differences across all of the
examined scenarios for the frequency of data collection,
adequacy of empirical data (T∗), and dispersion parame-
ter (r), the average discrepancy was significantly greater
for random walk standard deviation values of 4 (p <

0.001) and 8 (p < 0.001) compared to the baseline value
of 0.125. However, there was no significant difference
between random walk standard deviation values of 0.25
(p = 0.97), 0.5 (p = 0.99), 1 (p = 0.97), or 2 (p =
0.42) and the baseline random walk standard deviation
of 0.125.
Figure 8 presents the discrepancies from particle filter-

ing for different values of standard deviation associated
with fraction reported incidence parameter (η). It appears

Table 3 Discrepancy of particle filtering predictions in frequency
scenarios for different observation times and γ = 0.5

Frequency scenarios (γ = 0.5) T∗ = 35 T∗ = 42 T∗ = 49 T∗ = 56

PF using daily data, r = 2 474 270 80 0

PF using three-day data, r = 6 13038 6577 1637 128

PF using weekly data, r = 14 97325 38652 6661 592

PF using daily data, r = 8 337 230 66 0

PF using three-day data, r = 24 14900 6482 1264 67

PF using weekly data, r = 56 126163 43288 5761 418

PF using daily data, r = 32 635 188 13 0

PF using three-day data, r = 96 13868 4590 766 44

PF using weekly data, r = 224 156099 45808 4231 277

Table 4 Discrepancy of particle filtering predictions in frequency
scenarios for different observation times and γ = 1

Frequency scenarios (γ = 1) T∗ = 35 T∗ = 42 T∗ = 49 T∗ = 56

PF using daily data, r = 2 3327 695 87 0

PF using three-day data, r = 6 43931 12590 1630 39

PF using weekly data, r = 14 645037 154916 16362 976

PF using daily data, r = 8 1568 241 18 0

PF using three-day data, r = 24 35024 6251 682 4

PF using weekly data, r = 56 1216215 129467 6072 376

PF using daily data, r = 32 904 104 5 0

PF using three-day data, r = 96 25452 4199 393 0

PF using weekly data, r = 224 1243398 129629 4580 254

that particle filtering behaves robustly to changes in η

for daily, every-three-day and weekly scenarios. The value
for η was set to 1 for all of the scenarios reported in
this work.
As shown in Figs. 9 and 10, results suggest that increa-

sing the dispersion parameter does not appear to strongly
affect the performance of particle filtering at smaller
values of contact rate random walk standard devia-
tion parameter (γ ). However, at larger values of γ , the
impact of the dispersion parameter become more appar-
ent (Figs. 5, 6 and 7). After accounting for differences
across all of the examined scenarios for the frequency
of data collection, adequacy of empirical data (T∗), and
the contact rate random walk standard deviation param-
eter (γ ), the average discrepancy was significantly smaller
for each increasing dispersion parameter (r) from 1 to 32
(p < 0.001) as compared to the baseline value of 1.
Table 5 shows the discrepancy for the model without

particle filtering. The discrepancy for particle filtering
scenarios was found to be less than the discrepancy asso-
ciated with the model without particle filtering.

Discussion and future work
The particle filtering method explored here offers con-
siderable potential. The value offered by this approach
seems likely to be particularly pronounced when used in
the context of emerging communicable diseases in which
limited parameter information is available to inform avail-
able models, but where frequent (e.g., daily) reporting of
case counts are available. Particle filtering supports an
adaptive response updating the current state and stochas-
tic parameter values involved in dynamic models. In this
way, the models are kept current with the latest evidence,
which can be used to predict forward and to be used
to then anticipate possible trade-offs between interven-
tions. The key finding in this work is that particle filtering
can perform orders of magnitude more accurately in case
the daily clinical reports are available. For public health
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Fig. 4 Discrepancy versus random walk standard deviation using daily, three-day and weekly observations (T∗ = 35 and r = 32 for daily, 96 for
three-day, and 224 for weekly observations)

Fig. 5 Discrepancy in terms of dispersion parameter and random walk standard deviation - daily empirical data and T∗ = 42

Fig. 6 Discrepancy in terms of dispersion parameter and random walk standard deviation - empirical data available every three-days and T∗ = 42
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Fig. 7 Discrepancy in terms of dispersion parameter and random walk standard deviation - weekly empirical data and T∗ = 42

Fig. 8 Discrepancy versus fraction reported incidence standard deviation using daily, three-day and weekly observations (T∗ = 35, γ = 0.125 and
r = 32 for daily, 96 for three-day, and 224 for weekly observations)

Fig. 9 Discrepancy versus dispersion parameter using daily, three-day and weekly observations (T∗ = 42 and γ = 0.125)
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Fig. 10 Discrepancy versus dispersion parameter using daily, three-day and weekly observations (T∗ = 35 and γ = 0.125)

authorities seeking to employ accurate projection systems
for communicable disease outbreaks, this finding sug-
gests a premium on putting in place efficient reporting
schemes.
A second set of findings relates to the high robustness

of preferred particle filtering parameter assumptions as
we change the observation time in the outbreak and the
inter-observation interval. While the assumption made
for dispersion parameter associated with the negative
binomial likelihood formulation does exert some impact
on the accuracy of particle filtering, the results are far less
sensitive to variations in this parameter beyond an inter-
observation interval specific threshold. By contrast, while
the results are highly sensitive to the assumptions regard-
ing the rate of potential evolution of contacts per unit
time (γ ), the findings across different inter-observation
intervals and time of observation are consistent in sug-
gesting a specific range of low values for this parameter.
While the particulars of these values are likely to dif-
fer somewhat for distinct epidemiological contexts (e.g.,
pathogens), populations and types of data, the consis-
tency of these results suggests the potential for simpler
guidelines to govern the application of particle filtering
in specific epidemiological contexts. Importantly, given
this robustness and daily reporting, these results sug-
gest favorable starting assumptions for application of this

Table 5 Discrepancy without particle filtering in frequency
scenarios

Frequency scenarios Discrepancy

Without PF using daily data 101942842

Without PF using three-day data 386532229

Without PF using weekly data 575977188

approach to similar pathogens in developed countries. For
different epidemiological contexts, the robustness of the
results also suggest that a much simpler variant of the
methodology used here might be applied in the open-
ing days and weeks of an outbreak to estimate favorable
parameter values for the dispersion parameter and rate of
contact rate evolution for that particular context.
Research progress isneeded to adequately realize particle

filtering on other types of models, including agent-based
and discrete-event models [37]. Since these modeling
techniques are widely used in public health, and since
implementing particle filtering in the presence of these
types of models is not as straightforward due to software
limitations, advances are urgently required to improve
software support for particle filtering for such models.

Conclusion
The findings presented here demonstrate that in the pres-
ence of simple models, particle filtering in combination
with dynamic models can develop accurate predictive sys-
tems in the context of emerging communicable diseases,
particularly when models lack information about parame-
ters, but frequent reporting of empirical data is available.
The results suggest that more frequent sampling improves
predictive accuracy remarkably. The robustness of parti-
cle filtering in this case study also suggests that it may be
possible to apply a variant of the method presented here
to estimate unknown parameters of an emerging outbreak
– specifically a new pathogen that is not well-known –
in its opening days and weeks. According to the findings
in this work, even very rough models can be combined
with particle filtering to project the evolution of emerging
infectious diseases and secure strong guidance for health
policy makers.
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Appendix A: Detailed information about initial
values of compartmental states
S0: Truncated normal distribution, Mean = 900000, Stan-
dard deviation = 150000, Lower bound = 0, Upper bound
= N − I0, Sample size = number of particles = 10000

E0: 0 for all particles
I0: 7 for all particles
R0: N - S0 − E0 − I0 − V0
V0: 0 for all particles

In this model, V class refers to those receiving vacci-
nation during the pandemic (ongoing vaccination). Those
being vaccinated prior to the second wavemight be part of
R class or S depending on vaccine efficacy. Since the initial
values of R and S were unclear, we considered the initial
values of these states as distributions.

Appendix B: The discrepancy of particle filtering
predictions in frequency scenarios for different
observation times and γ = 0.125 and γ = 2

Table 6 Discrepancy of particle filtering predictions in frequency
scenarios for different observation times and γ = 0.125

Frequency scenarios (γ = 0.125) T∗ = 35 T∗ = 42 T∗ = 49 T∗ = 56

PF using daily data, r = 2 354 225 71 0

PF using three-day data, r = 6 12109 5945 1593 181

PF using weekly data, r = 14 68381 36313 6322 608

PF using daily data, r = 8 381 210 44 0

PF using three-day data, r = 24 12273 5655 1309 93

PF using weekly data, r = 56 162378 40820 5670 476

PF using daily data, r = 32 455 169 13 0

PF using three-day data, r = 96 12808 4647 1125 90

PF using weekly data, r = 224 153010 44106 5224 295

Table 7 Discrepancy of particle filtering predictions in frequency
scenarios for different observation times and γ = 2.0

Frequency scenarios (γ = 2.0) T∗ = 35 T∗ = 42 T∗ = 49 T∗ = 56

PF using daily data, r = 2 3327 695 87 0

PF using three-day data, r = 6 43931 12590 1630 39

PF using weekly data, r = 14 645037 154916 16362 976

PF using daily data, r = 8 1568 241 18 0

PF using three-day data, r = 24 35024 6251 682 4

PF using weekly data, r = 56 1216215 129467 6072 376

PF using daily data, r = 32 904 104 5 0

PF using three-day data, r = 96 25452 4199 393 0

PF using weekly data, r = 224 1243398 129629 4580 254
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