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Abstract

Background: We developed a clinical bedside tool to simultaneously estimate the probabilities of third-generation
cephalosporin-resistant Enterobacteriaceae (3GC-R), carbapenem-resistant Enterobacteriaceae (CRE), and multidrug-
resistant Pseudomonas aeruginosa (MDRP) among hospitalized adult patients with Gram-negative infections.

Methods: Data were obtained from a retrospective observational study of the Premier Hospital that included
hospitalized adult patients with a complicated urinary tract infection (cUTI), complicated intra-abdominal infection
(cIAI), hospital-acquired/ventilator-associated pneumonia (HAP/VAP), or bloodstream infection (BSI) due to Gram-
negative bacteria between 2011 and 2015. Risk factors for 3GC-R, CRE, and MDRP were ascertained by multivariate
logistic regression, and separate models were developed for patients with community-acquired versus hospital-
acquired infections for each resistance phenotype (N = 6). Models were converted to a singular user-friendly
interface to estimate the probabilities of a patient having an infection due to 3GC-R, CRE, or MDRP when ≥ 1 risk
factor was present.

Results: Overall, 124,068 patients contributed to the dataset. Percentages of patients admitted for cUTI, cIAI, HAP/
VAP, and BSI were 61.6, 4.6, 16.5, and 26.4%, respectively (some patients contributed > 1 infection type). Resistant
infection rates were 1.90% for CRE, 12.09% for 3GC-R, and 3.91% for MDRP. A greater percentage of the resistant
infections were community-acquired relative to hospital-acquired (CRE, 1.30% vs 0.62% of 1.90%; 3GC-R, 9.27% vs
3.42% of 12.09%; MDRP, 2.39% vs 1.59% of 3.91%). The most important predictors of having an 3GC-R, CRE or MDRP
infection were prior number of antibiotics; infection site; infection during the previous 3 months; and hospital
prevalence of 3GC-R, CRE, or MDRP. To enable application of the six predictive multivariate logistic regression
models to real-world clinical practice, we developed a user-friendly interface that estimates the risk of 3GC-R, CRE,
and MDRP simultaneously in a given patient with a Gram-negative infection based on their risk (Additional file 1).

Conclusions: We developed a clinical prediction tool to estimate the probabilities of 3GC-R, CRE, and MDRP among
hospitalized adult patients with confirmed community- and hospital-acquired Gram-negative infections. Our
predictive model has been implemented as a user-friendly bedside tool for use by clinicians/healthcare
professionals to predict the probability of resistant infections in individual patients, to guide early appropriate
therapy.
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Background
The prevalence of highly resistant Gram-negative infec-
tions has increased dramatically over the past decade
among hospitalized patients throughout the United
States [1] and the world [2]. Three of the more concern-
ing antibiotic-resistant Gram-negative pathogens that
are classified as serious or urgent threats to public health
include third-generation cephalosporin-resistant Entero-
bacteriaceae (3GC-R), carbapenem-resistant Enterobac-
teriaceae (CRE), and multidrug-resistant Pseudomonas
aeruginosa (MDRP) [1, 2].
Patients with infections due to 3GC-R, CRE, or MDRP

have limited treatment options and are highly vulnerable
to receiving inappropriate empiric or delayed appropri-
ate therapy because clinicians frequently fail to recognize
these infections prior to culture and susceptibility
reporting. The deleterious consequences of delayed ap-
propriate therapy are well described [3–10]. Not only
does delayed appropriate therapy increase the risk of
death [3, 5–10], but studies have also shown that delayed
appropriate therapy prolongs hospitalization [3–10].
Prolonged hospitalization places patients at risk of devel-
oping subsequent antibiotic-resistant infections [3, 11],
which can ultimately lead to further antibiotic usage [5]
and exacerbate institutional antimicrobial resistance pat-
terns [12, 13].
As a mechanism to promote appropriate antibiotic

usage within a healthcare institution, the World Health
Organization recommends that healthcare institutions
create tools and implement policies informed by real-
world data to increase the probability of patients receiv-
ing early appropriate therapy [14]. To enable the admin-
istration of early and appropriate therapy, it is important
that patients at risk of being infected with resistant path-
ogens be identified promptly, especially as definitive cul-
ture results are typically not available within the first 24
to 72 h of infection onset [15, 16]. Although there is a
general appreciation of patient-level risk factors (eg, co-
morbid conditions, immunosuppression) and exposures
(eg, cumulative number of prior antibiotic exposures,
prior hospitalizations) that increase the probability of
having an infection due to 3GC-R, CRE, or MDRP, there
are no widely available and readily adaptable tools for es-
timating the likelihood of having one of these resistant
Gram-negative pathogens simultaneously in individual
patients according to the presence or absence of critical
hospital- and patient-level covariates.
To address this unmet need, the goal of this study was

to develop a user-friendly clinical tool that simultan-
eously estimates the likelihood of having an infection
due to 3GC-R, CRE, or MDRP when one or more risk
factors are present among patients with infections due
to Gram-negative bacteria. First, we sought to describe
the risk factors for 3GC-R, CRE, and MDRP among

patients with community- and hospital-acquired Gram-
negative infections using data from a large cohort of
hospitalized patients across multiple facilities. Prediction
models were developed from these risk factor analyses
to estimate the probability of having a 3GC-R, CRE, or
MDRP infection when one or more risk factors were
present in a given patient. The prediction models were
then used to create a user-friendly clinical instrument
for use at the bedside.
In summary, our prediction tool was developed to help

clinicians identify hospitalized adult patients with Gram-
negative bacteria who would benefit the most from tai-
lored empiric treatment regimens in the critical period
when a Gram-negative pathogen is identified on a Gram
stain or with a rapid diagnostic test and antibiotic suscep-
tibility results are not yet available. With this information,
physicians can make more informed empirical antibiotic
selections, and thereby increase the likelihood of timely
appropriate antibiotic therapy. Studies have shown that
the critical window between infection onset and delivery
of appropriate antibiotics is 48–72 h [17–19]. Our tool
aids in antibiotic selection during this critical time window
as Gram stain and rapid diagnostic test results become
available within the first 12–24 h of culture collection.

Methods
Data source
Input data for the development of the models were from
a retrospective observational study of the Premier Hos-
pital database, which contains coding and billing infor-
mation for approximately 50 million admissions from
more than 500 acute-care hospitals and is the largest
hospital-based database in the United States. The study
was limited to the approximately 160 institutions that
contributed microbiology data for the entire study
period of January 1, 2011, to October 1, 2015 [20]. The
database was fully de-identified and compliant with the
Health Insurance Portability and Accountability Act of
1996 (HIPAA); as such, no special permission was re-
quired to review patient records and extract the data.
Given the de-identified and retrospective nature of the
data, as well as the observational study design, written
patient consent was neither required nor sought.
Patients included in the study population were adults

(≥18 years) who had ≥1 admission to a hospital with evi-
dence of a complicated urinary tract infection (cUTI),
complicated intra-abdominal infection (cIAI), hospital-
acquired or ventilator-associated pneumonia (HAP/
VAP), or bloodstream infection (BSI) (Additional file 2).
The index culture was defined as the earliest culture
drawn that produced a positive finding for any Gram-
negative bacteria. In addition, patients had to have a
positive culture for Gram-negative bacteria drawn from
a site consistent with the infection type (Additional file 2).
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Finally, patients were also required to have evidence of
treatment with an intravenous antibiotic on the day of
Gram-negative index culture collection or 2 days
thereafter.
Infection groups were defined based on prespecified

selection algorithms using primary or secondary Inter-
national Classification of Diseases, Ninth Revision
(ICD-9) diagnosis and procedure codes for each co-
hort (Additional file 2). Because codes were not
mutually exclusive, an individual patient could con-
tribute to more than one infection category during
the study period.
3GC-R were defined as Enterobacteriaceae that were

not susceptible to third-generation cephalosporins. CRE
was defined as Enterobacteriaceae that were nonsuscep-
tible to doripenem, meropenem, imipenem, or ertape-
nem. MDRP was defined as Pseudomonas that were not
susceptible to at least three antipseudomonal agents, in-
cluding penicillins, cephalosporins, monobactams,
carbapenems, aminoglycosides, or fluoroquinolones.
Nonsusceptibility was defined as either resistant or inter-
mediate. Overall, susceptibility status was defined as in-
fections that were susceptible to other antibiotics;
patients who had an infection that could not be ascer-
tained based on the susceptibility status were excluded
from the study.

Potential predictors
Potential predictors in the models included infection-,
patient-, and hospital-level characteristics. Additional
details related to the potential predictors in the models
are found in Additional file 2. Infection-level characteris-
tics included the site of infection, type of hospital unit
(intensive care unit [ICU] vs non-ICU) at time of culture
draw, or hospital- or community-acquired. The infection
was considered to be hospital-acquired if the patient had
an index culture date ≥3 days after hospital admission
and was considered community-acquired for patients
who had an index culture date < 3 days after hospital
admission.
Patient-level characteristics included age, race, sex,

marital status, and a composite comorbidity index
(Charlson Comorbidity Index; eg, cancer, cerebrovascu-
lar disease, chronic pulmonary disease, congestive heart
failure, diabetes with or without complications, dialysis,
mild liver disease, myocardial infarction, paraplegia or
hemiplegia, peripheral vascular disease) [21]. Patient-
level characteristics also included admission type (emer-
gency, urgent, elective, trauma center, or other), source
(transfer, clinical referral, court/law enforcement, other,
or unknown), prior all-cause hospitalization during the
6-month period before the admission, infections in the
3 months prior to the admission, and prior number of
antibiotics. Prior antibiotic use was defined as use of

antibiotic with activity against Gram-negative bacteria
prior to index culture day in the qualified admission
(Additional file 2). It was categorized as < 2, 2–3, and ≥
4, indicating cumulative number of different antibiotics
a patient received before index culture date in the quali-
fied admission.
Hospital-level characteristics included the type of facility

(ie, teaching vs nonteaching), setting (ie, urban or rural),
geographic area (ie, Northeast, Midwest, South, or West),
geographic division (ie, New England, Middle Atlantic,
East North Central, West North Central, South Atlantic,
East South Central, West South Central, Mountain, or Pa-
cific), and number of beds (ie, 0–99, 100–199, 200–299,
300–399, 400–499, and ≥ 500). Prevalence of resistant
Gram-negative infections (CRE, 3GC-R, and MDRP) in
the hospital facility was included and defined by the me-
dian prevalence value across all hospitals.

Statistical analyses
The first step of analysis was to summarize the study
population by standard descriptive statistics (means for
continuous variables, proportions for categorical vari-
ables) to compare patients with resistant and nonresis-
tant infections. Pearson χ2 or Fisher’s exact test was
performed for comparisons between two categorical var-
iables; Student t or Mann-Whitney U test was used for
comparisons between dichotomous and a continuous
variable. Tests for trends were used to assess for the
presence of a relationship between cumulative number
of prior antibiotic exposures with Gram-negative activity
and presence of resistant pathogen.
Because of the large number of predictors identified,

least absolute shrinkage and selection operator (LASSO)
logistic regression, or L1-regularized logistic regression,
was used to select the set of predictors that best pre-
dicted the outcome by evaluating each coefficient simul-
taneously. Separate models for each resistance
phenotype were conducted for hospital-acquired and
community-acquired infections because they represent
different patient populations with potentially different
sets of risk factors for resistant infections. For the
LASSO logistic regression analyses, the study sample
was randomly split into the training set (70% of the
study sample) and the test set (30% of the study sample).
The training set was used to construct the LASSO logis-
tic regression model. Cross-validation based on area
under the curve (AUC) of receiver operating curves on
training data was used to determine the best LASSO lo-
gistic regression model. Variables found to be predictive
in the univariate analysis at P < 0.20 were included as po-
tential predictors at model entry in each LASSO logistic
regression analysis. Variables with P < 0.1 were retained
in the final models. Model performance was evaluated
using the model lift among the top 10% of scored

Lodise et al. BMC Infectious Diseases          (2019) 19:718 Page 3 of 10



subjects in the test data. The model lift was defined as
the probability of a positive case given a top 10% score
divided by the probability of a positive case in the overall
sample. A higher lift indicated a stronger association be-
tween the predicted score and the outcome. The pre-
dicted and observed likelihood of each resistant
phenotype in each model was examined for any
discordance.

Development of a user-friendly clinical bedside tool
Six models were developed: three for patients with hos-
pital-acquired 3GC-R, CRE, and MDRP infections and
three for community-acquired 3GC-R, CRE, and MDRP
infections. A clinical prediction tool implemented using
Microsoft Excel™ (Redmond, WA) was developed to pro-
vide a convenient interface to the statistical models for
use at the patient bedside. Infection, hospital, and pa-
tient characteristics for an individual patient are input
into the tool, which then displays the probability of a re-
sistant infection in tabular and graphical forms. The final
tool contains the hospital- and community-specific
models for each category of resistant pathogens and is
available from Additional file 1 together with a user
guide.

Results
Study population and baseline event data
A total of 124,068 patients contributed to the dataset
during the study period. Baseline event counts in the
training and test datasets are shown in Additional file 2:
Table S1. Numbers of patients admitted for cUTI,
cIAI, HAP/VAP, and BSI were 76,367, 5649, 20,432,
and 32,706, respectively (some patients contributed
more than one infection type). The proportions of re-
sistant infection in the study population overall were
12.09% for 3GC-R, 1.90% for CRE, and 3.91% for
MDRP. Within each microbial category, a greater per-
centage of resistant infections were community-ac-
quired relative to hospital-acquired (3GC-R, 9.27% vs
of 12.09%; CRE, 1.30% vs 0.62% of 1.90% MDRP,
2.39% vs 1.59% of 3.91%.

Bivariate risk factor analysis
Detailed results of the bivariate risk factor analyses are
shown in Additional file 2: Table S2. The values in the
table indicate the degree of increased risk conferred by
having the level of the predictor indicated for that row.
For yes/no predictors, a value of “no” was taken as the
reference value and indicated no additional risk. A value
of 0 for a predictor indicates that the predictor was not
included in that model, based on the results of the
multivariate analysis. Covariates remaining in the final
models were then summarized in Table 1. The number
of prior antibiotics received, infection site, infection

during the previous 3 months, and hospital prevalence of
the resistant pathogen were among the most important
predictors across most of the six models (boldface cells
in Table 1).

Predictive models for hospital-acquired gram-negative
infections
Among hospital-acquired infections, the most important
predictor for all three resistant phenotypes was the num-
ber of antibiotics received during the current hospital
admission. Infection type was predictive of the presence
of resistant infection: cUTI was not a predictor of resist-
ance, cIAI and BSI were predictive of CRE and 3GC-R
only, and HAP/VAP predicted the presence of all three
resistant phenotypes. Among the infection types exam-
ined, only HAP/VAP was a predictor of MDRP. Lesser
predictors of CRE and 3GC-R infection, in addition to
hospital prevalence, admitting source, and hospital ad-
mission during the previous 6 months (common to both
hospital- and community-acquired infection mentioned
above), were patient stay in the ICU and diabetes with
complications. Prior infection in the last 3 months was
predictive of MDRP infection, as were chronic pulmon-
ary disease and paraplegia/hemiplegia. Comorbidities
such as cancer, cerebrovascular disease, congestive heart
failure, and mild liver disease predicted the hospital ac-
quisition of 3GC-R and to a lesser extent CRE, but not
MDRP (Table 1, Additional file 2: Table S2).

Predictive models for community-acquired gram-negative
infections
Predictors of all three resistant phenotypes in commu-
nity-acquired infections included cUTI, infection during
the 3 months before hospital admission, presence of
paraplegia/hemiplegia, and diabetes without complica-
tions. For CRE, the most important predictors were
prevalence, prior infection in the last 3 months, and in-
fection site. For 3GC-R, age, prevalence, and prior infec-
tion in the last 3 months were most important. For
MDRP, infection site, paraplegia/hemiplegia, prior infec-
tion in the last 3 months, and prevalence were most im-
portant (Table 1, Additional file 2: Table S2).

Evaluation of model performance
Of the six models, those for 3GC-R had the highest cor-
rect prediction rate for resistant infection for both hos-
pital- and community-acquired infections (18.4 and
21.7%, respectively). The MDRP models had the highest
AUC and the highest lift (indicating a stronger association
between predicted score and outcome) for both hospital-
and community-acquired infections. Because of the im-
portance of prior antibiotic use, the hospital-acquired
models had higher AUC and lift values than the corre-
sponding community-acquired models (Table 2).
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Creation of a user-friendly Excel-based clinical bedside
tool
To enable application of the six predictive multivari-
ate logistic regression models to real-world clinical
practice, we developed a user-friendly interface that
estimates the risk of resistant infection. This tool is
intended for use by clinicians at the patient bedside.
Because it is not intended to be prescriptive, the tool
simply estimates the risk of resistance without making

specific recommendations regarding the best treat-
ment. These recommendations will help the clinician
select the most appropriate (empiric) antibiotic treat-
ment for an individual patient according to the full
context of patient characteristics and circumstances.
Consisting of four worksheets, the full tool and a de-

tailed user guide are available at Additional file 1. User-
modifiable drop-down lists are provided for entry of the
model inputs of infection, hospital, and patient

Table 1 Independent predictors of ≥1 type of resistant infection included in the multivariate analysisa

Predictor CRE 3GC-R MDRP

Hospital Community Hospital Community Hospital Community

Other Infection siteb ✓ ✓ ✓ ✓ ✓ ✓

ICU vs non-ICU ✓ ✓ ✓

Hospital prevalence ✓ ✓ ✓ ✓ ✓ ✓

Patient Age ✓ ✓

Transfer ✓ ✓ ✓ ✓ ✓ ✓

Admission in prior 6 months ✓ ✓ ✓ ✓ ✓ ✓

Prior number of antibioticsc ✓ ✓ ✓

Infection in prior 3months ✓ ✓ ✓ ✓

Comorbiditiesd Cancer ✓ ✓

Cerebrovascular disease ✓ ✓

Chronic pulmonary disease ✓ ✓

Heart failure ✓

Diabetes with complications ✓ ✓ ✓

Diabetes without complications ✓ ✓ ✓

Dialysis ✓ ✓ ✓ ✓ ✓

Mild liver disease ✓ ✓

Myocardial infarction ✓ ✓ ✓

Para/hemiplegia ✓ ✓ ✓ ✓

Peripheral vascular disease ✓

3GC-R third-generation cephalosporin-resistant Enterobacteriaceae, CRE carbapenem-resistant Enterobacteriaceae, ICU intensive care unit, MDRP multidrug-resistant
Pseudomonas aeruginosa
aBoldface cells = most important predictors across most models (predictors incurring the highest level of risk compared with the reference value).
bComplicated urinary tract infection, complicated intra-abdominal infection, bloodstream infection, or hospital-acquired/ventilator-associated pneumonia.
cPrior number of antibiotics was not included for community-acquired infection because of the difficulty of recovering accurate data
dPrimary and secondary diagnoses were based on International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] codes

Table 2 Evaluation of model predictive performance

CRE 3GC-R MDRP

Performance Metrica Hospital Community Hospital Community Hospital Community

AUC for training data 0.90 0.79 0.87 0.71 0.94 0.84

AUC for test data 0.92 0.79 0.87 0.70 0.94 0.83

Correct prediction among top 10% scored subjects in test
data, n/N (%)

145/3496
(4.15)

165/3607
(4.57)

627/3411
(18.38)

786/3624
(21.69)

405/3586
(11.29)

388/3628
(10.69)

Lift of top 10% scored subjects in test datab 7.8 3.8 6.4 2.6 7.9 5.0

3GC-R third-generation cephalosporin-resistant Enterobacteriaceae, AUC area under the receiver operating characteristic curve, CRE carbapenem-resistant
Enterobacteriaceae, LASSO least absolute shrinkage and selection operator, MDRP multidrug-resistant Pseudomonas aeruginosa
aThe method of predictor selection was LASSO logistic regression that minimized the cross-validation misclassification error; LASSO C value was 0.1
bLift defined as probability of a positive case given a top 10% score divided by the probability of a positive case in overall sample. This ratio evaluates how much
a top score enriches for selecting positive cases compared with random sampling in the absence of a model. A higher lift indicates a stronger association
between the predicted score and the outcome
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characteristics. A summary of the results is then pro-
vided, consisting of the risk factors and the likelihood of
the presence of each type of resistant infection in the
model, including the number of patients that need to be
observed to detect one case of resistance (1/probability),
which is easier to interpret in cases of small probabil-
ities. A summary of the results for each run of the tool
can be printed as a portable document format (PDF) re-
port that includes the tool overview, model inputs, and
results. In addition, a comprehensive calculation sheet
can be accessed if required for more detailed data ana-
lysis (Fig. 1).

Discussion
One of the fundamental pillars of antimicrobial steward-
ship is ensuring that patients with life-threatening infec-
tions receive early, appropriate antimicrobial therapy.
Despite the longstanding recognition of the positive ben-
efits of “getting it right the first time,” delayed appropri-
ate therapy rates for patients with serious Gram-negative
infections are still reported to be > 30% in several publi-
cations [3, 7]. To facilitate the administration of early
appropriate therapy, it is important that patients at risk
of being infected with resistant pathogens be identified

promptly, especially as definitive culture results are typ-
ically not available within the first 24 to 72 h of onset of
infection [15, 16].
Advances in rapid diagnostics have shortened the lag

time between infection onset to pathogen identification
from days to hours and have had positive effects on clin-
ical outcomes when paired with robust antimicrobial
stewardship programs [22]. Although rapid diagnostics
represent a significant advance from traditional culture
methods, current technologies are only able to identify a
limited number of antibiotic-resistant Gram-negative
pathogens. Therefore, clinical prediction tools, ideally in
tandem with rapid diagnostic tests and Gram stain re-
sults, are needed to inform empiric antibiotic selection
in the critical period when a Gram-negative pathogen is
identified on a Gram stain or with a rapid diagnostic test
and antibiotic susceptibility results are not yet available.
To date, most published clinical prediction tools have
focused on one pathogen or antibiotic-resistant pheno-
type [23, 24]. Although helpful in the antibiotic selection
process, the risk factors for infections due to the various
antibiotic-resistant Gram-negative pathogens are largely
overlapping, and patients are at risk of several resistant
Gram-negative pathogens simultaneously when a

P
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Infection Type

Likelihood of Resistance

0.0%

Probability 7% 1% 1%

14 73 152
Number of patients
needed to observe

one case of resistance

Patient's 
Gram-negative

Community Onset

26–35
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Dialysis, Myocardial infarction

Infection Type
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Infection Type
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Comorbidities

2.0%

4.0%

6.0%

1.0%

3.0%

5.0%

7.0%

8.0%

3-GCR MDRP

Complicated urinary 
tract infection (cUTI)

Fig. 1 Clinical bedside tool to predict the probability of drug-resistant pathogens among an adult population with Gram-negative infections:
sample result. 3GC-R = third-generation cephalosporin-resistant Enterobacteriaceae; CRE = carbapenem-resistant Enterobacteriaceae; MDRP =
multidrug-resistant Pseudomonas aeruginosa
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common risk factor, or combination of risk factors, are
present. For example, prior receipt of carbapenems has
been found to increase the risk of having an infection
due to several highly resistant Gram-negative bacteria.
Cognizant of this, we developed a clinical prediction tool
that estimates the probabilities of having a Gram-nega-
tive infection due to 3GC-R, CRE, or MDRP. We se-
lected these antibiotic-resistant Gram-negative
pathogens because they are becoming increasingly com-
mon across most US healthcare institutions and are con-
sidered major threats to public health by the US Centers
for Disease Control and Prevention [1].
When developing the clinical tool, we also believed it

was important to develop two different models to differ-
entiate the two distinct hospitalized patient populations
with Gram-negative infections because risk factors or
strength of their association can vary by population. The
first focused on patients who presented to the hospital
(ie, community-acquired); the second centered on pa-
tients who developed their infection during their
hospitalization (ie, hospital-acquired). Interestingly, pa-
tients with community-acquired Gram-negative infec-
tions had a higher baseline risk of having resistant
Gram-negative infections relative to those with hospital-
acquired infections in this study, highlighting the need
for the development of two separate clinical prediction
models. Another distinguishing feature of this clinical
prediction model was the inclusion of the prevalence of
each resistant phenotype of interest in the hospital
where the patient developed the infection. It is well
established that a patient’s risk of having an antibiotic-
resistant infection is driven in part by the bacteria
present in the healthcare institution. Therefore, we be-
lieve it was important to consider it as a covariate in the
clinical model-building phase. Finally, we believe that
our model also rectifies issues related to autocorrelation,
in which a patient could theoretically be counted twice if
exposed to more than one type of infection. This expos-
ure could potentially occur on different sites or on dif-
ferent days, leading to potentially different exposures.
Because we considered the site of infection in model de-
velopment, the risk of autocorrelation was minimized,
confirming the quality of our model.
Although there were some distinguishing aspects to

our clinical prediction tool, our model development ap-
proach was similar to previous studies [25–27]. Using
the Premier Hospital database, which included 124,068
hospital admissions from approximately 160 institutions
that contributed microbiology data during the period
from January 1, 2011, to October 1, 2015, we first identi-
fied the infection-, patient-, and hospital-level risk fac-
tors that increase the probability of having an infection
due to 3GC-R, CRE, or MDRP. Not surprisingly, risk
factors and exposures associated with antimicrobial

resistance in this study were largely consistent with pre-
vious reports [28–35]. The most important independent
risk factors for both hospital and community acquisition
of all three resistant bacteria were hospital prevalence of
the resistant pathogen, admission source, and previous
hospital admission within the prior 6 months [28–30,
32–35]. All three of these factors capture time at risk in
healthcare facilities among patient populations
predisposed to infection by antibiotic-resistant patho-
gens [28–35] and highlight the importance of under-
standing the prevalence of a given antibiotic-resistant
phenotype in an institution. Another common risk factor
for 3GC-R, CRE, and MDRP infection among individuals
with hospital-acquired Gram-negative infections was the
number of antibiotics received during the current admis-
sion [28–35]. Constant and cumulative exposure to anti-
biotics disturbs the natural bacterial flora, in particular
in the gastrointestinal tract, and predisposes patients to
colonization by resistant phenotypes. For all three patho-
gens, the presence of a resistant phenotype was pre-
dicted more strongly by previous use of four or more
antibiotics than by previous use of two to three antibi-
otics in the current hospital admission. Our data suggest
that a patient’s cumulative antibiotic exposure history is
likely to be more important than any one specific anti-
biotic exposure when determining a patient’s likelihood
of harboring a resistant pathogen.
The information from the multivariate logistic regres-

sion analyses was then used to develop models to esti-
mate the likelihood of having these infections when one
or more risk factors were present in hospitalized adult
patients with Gram-negative infections. The major ad-
vantage of using logistic regression to develop clinical
prediction rules is the functionality of the final models.
In addition to identifying variables that are independ-
ently associated with stronger odds of having the out-
come of interest, the final logistic regression models are
mathematic equations that can be used to predict the
probability of antimicrobial resistance based on the com-
bination of significant risk factors present in a given in-
dividual with an infection [10, 36]. Adaptation of the
models to provide a clinical tool was relatively straight-
forward because of their simplicity. With the informa-
tion generated from this clinical prediction tool, we
anticipate that clinicians will be able to make more in-
formed empiric antibiotic selection decisions and
thereby increase the likelihood of appropriate empiric
antibiotic therapy. Although no specific recommenda-
tions are made regarding treatment options, the tool is
designed as a simple interface to estimate the risk of re-
sistance, which can be used by the clinician to determine
the best course of treatment at bedside.
Several things should be considered when interpreting

these findings. As the data used for the development of
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our models was from a database, our study is subject to
the limitations associated with retrospective observations
studies, and the ICD-9 codes may not be 100% accurate.
As with all electronic health databases, there may be er-
rors of omission and/or commission in coding. Because
our operational definitions were based on information
within the database, study measures may be less accurate
than those based on medical record review or data gath-
ered prospectively. Because the Premier Hospital data-
base lacks information on healthcare utilization outside
of Premier facilities, we did not include prior receipt of
antibiotics in the community-acquired model. We did
not consider prior colonization with a resistant pathogen
as part of these analyses as only clinical culture data
were available in the database. We also cannot exclude
the possibility of patient-to-patient transmission of the
resistant strains, which may weaken the association be-
tween acquisition of resistant pathogens and the identi-
fied risk factors. Another limitation was that the tool
was not validated using an external dataset; a validation
study should be performed. Finally, additional prediction
methods such as neural networks, random forest, and
SuperLearner, which allow for the incorporation of sev-
eral algorithms simultaneously to deliver the strongest
prediction model, may improve the prediction modeling
observed in this study [37–39]. Despite these limitations,
we think the model fit statistics demonstrate that we
employed robust methodologies to derive the clinical
prediction tool and adequately captured comorbid con-
ditions, key baseline characteristics, and clinical covari-
ates when deriving clinical prediction tools. More
importantly, we believe our clinical prediction tool has
merit, as it relied on the data elements that are typically
available to the clinician at the time of empiric antibiotic
selection among patients presenting with Gram-negative
infections.

Conclusions
Based on a large retrospective observational study, we
developed six separate models for the prediction of hos-
pital- and community-acquired infections due to 3GC-R,
CRE, and MDRP among hospitalized adult patients with
Gram-negative infections. The performance of our
models is superior to or comparable with the perform-
ance of similar published models because of (1) the large
number of patients and institutions contributing data,
(2) the number and diversity of potential predictors con-
sidered, and (3) the inclusion of antibiotic resistance
rates in the included hospitals. Our predictive model
was implemented as a user-friendly bedside tool for use
by physicians or healthcare professionals to predict the
probability of resistant infection in an individual patient
to expedite and direct initial antibiotic therapy and im-
prove outcomes among hospitalized adult patients with

Gram-negative infections in the critical period when a
Gram-negative pathogen is identified on a Gram-stain or
with a rapid diagnostic test and antibiotic susceptibility
results are not yet available.
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