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Abstract

Background: Hospital infection control requires timely detection and identification of organisms, and their
antimicrobial susceptibility. We describe a hybrid modeling approach to evaluate whole genome sequencing of
pathogens for improving clinical decisions during a 2017 hospital outbreak of OXA-181 carbapenemase-producing
Escherichia coli and the associated economic effects.

Methods: Combining agent-based and discrete-event paradigms, we built a hybrid simulation model to assess
hospital ward dynamics, pathogen transmission and colonizations. The model was calibrated to exactly replicate the
real-life outcomes of the outbreak at the ward-level. Seven scenarios were assessed including genome sequencing
(early or late) and no sequencing (usual care). Model inputs included extent of microbiology and sequencing tests,
patient-level data on length of stay, hospital ward movement, cost data and local clinical knowledge. The main
outcomes were outbreak size and hospital costs. Model validation and sensitivity analyses were performed to
address uncertainty around data inputs and calibration.

Results: An estimated 197 patients were colonized during the outbreak with 75 patients detected. The total
outbreak cost was US$318,654 with 6.1% of total costs spent on sequencing. Without sequencing, the outbreak was
estimated to result in 352 colonized patients costing US$531,109. Microbiology tests were the largest cost
component across all scenarios.

Conclusion: A hybrid simulation approach using the advantages of both agent-based and discrete-event modeling
successfully replicated a real-life bacterial hospital outbreak as a foundation for evaluating clinical outcomes and
efficiency of outbreak management. Whole genome sequencing of a potentially serious pathogen appears effective
in containing an outbreak and minimizing hospital costs.

Keywords: Simulation modeling, Agent-based model, Discrete-event model, Pathogen sequencing, Whole genome
sequencing, Hospital outbreak

Introduction
Nosocomial infections, also known as healthcare-associated
infections (HAI), affect 7.1 patients per 100 patients (95%
confidence interval: 6.5–7.8) in high-income countries [1].
The increasing presence of multidrug resistant pathogens is
compounding the importance of reducing nosocomial in-
fections. HAI confirmation currently relies on the results of
microbiology cultures and, less frequently, molecular assays.

The lack of specificity in these tests causes inefficient or in-
correct use of the limited isolation rooms available in major
hospitals, particularly during HAI outbreaks. Bacterial
whole genome sequencing (WGS) provides infection con-
trol teams with more granular information to better discern
between different strains of bacteria which, in turn, can im-
prove the way patients are managed during outbreaks, for
example, better prioritizing patients for isolation [2].
Increase in world travel is also increasing the diversity of
bacterial strains present in any one location. This may in-
crease the risk of high-risk pathogens or novel antibiotic

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: thomas.elliott@qimrberghofer.edu.au
1Population Health Department, QIMR Berghofer Medical Research Institute,
300 Herston Rd, Herston, Brisbane Q4006, Australia
Full list of author information is available at the end of the article

Elliott et al. BMC Infectious Diseases           (2020) 20:72 
https://doi.org/10.1186/s12879-019-4743-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-019-4743-3&domain=pdf
http://orcid.org/0000-0002-7702-7688
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:thomas.elliott@qimrberghofer.edu.au


resistance genes becoming established in the population be-
fore being recognized.
Hospitals are continually under pressure to provide effi-

cient and effective services with limited resources. Infor-
mation on the direct costs, opportunity costs and patient
health benefits for alternative courses of action assists
decision-makers to make well-informed choices. Ineffect-
ive decisions could introduce higher costs and reduce
opportunities to prevent morbidity or save lives [3]. Simu-
lation modeling has a rich history in answering ‘what-if’
questions in complex environments such as hospitals
where prospective trials or cohort studies are difficult, un-
ethical or too expensive. Designing the appropriate simu-
lation model is integral to predicting the correct outcomes
and making use of available data [4]. The model choice
depends on the level of detail needed, the level of agent
interaction and time scale of the intervention.
The merits of agent-based simulation (ABS) and

discrete-event simulation (DES) are often debated in
modeling how to manage non-communicable diseases
[4]. A systematic review on ABS models found seven
studies involving interventions for controlling HAIs, 14
on methicillin-resistant Staphylococcus aureus transmis-
sion and three on Clostridium difficile [5]. Simulation
studies within hospitals typically employ DES models
[6]. Hybrid ABS/DES models have been sparsely used in
hospital settings or outbreak scenarios. Hybrid simula-
tion is a growing field in healthcare and AnyLogic® is the
only program which can integrate the ABS, DES and sys-
tem dynamics paradigms [7].
The purpose of this study was to build a hybrid model

that simulated hospital processes involved in controlling
an infectious disease outbreak. The model was motivated
by an evaluation of the impact of WGS in managing an
outbreak of a novel Escherichia coli strain (OXA-181).
We compared WGS as it was used in practice (delayed
use) with earlier WGS, or not at all, to determine the
relative costs and benefits of these strategies.

Methods
Purpose
The hybrid ABS/DES model was developed using Any-
Logic® version 8.3.3 (XJ Technologies, St Petersburg,
Russia). The model was designed to evaluate the effect
of WGS in providing information to infectious disease
physicians to better manage patients involved in a hos-
pital outbreak. We replicated a real outbreak at a
major hospital in south east Queensland, Australia
and simulated the effects of alternative WGS scenarios
in controlling the outbreak. The model description
hereunder follows the ‘Overview, Design concepts, and
Details’ reporting guideline designed to facilitate a
complete, rigorous and transparent agent-based model
description [8].

The outbreak
The OXA-181 E. coli outbreak started in April of 2017
when a patient arriving from overseas was admitted to
hospital. This patient was screened using usual micro-
biological tests, and was assumed to be colonized with a
low-risk pathogen that did not require additional infec-
tion control precautions. The patient was permitted to
move through the hospital unknowingly spreading the
pathogen to other patients, until five patients were identi-
fied with the same species and resistance profile. Colo-
nized patients were detected through the hospital’s
routine infectious disease screening protocols. At this
stage, WGS was performed on these five isolates. WGS
identified the pathogen as sequence type (ST) 38 Escheri-
chia coli, with close phylogenetic relatedness to strains
previously identified in Vietnam. This strain also carried a
gene encoding OXA-181 carbapenemase, which are rarely
encountered in Australia and had not been previously de-
scribed in Queensland public hospitals. They have rapidly
emerged in some parts of the world, especially Turkey,
North Africa and the Middle East [9, 10] and have been
implicated in major hospital outbreaks [11].

Entities, state variables, and scales
The hybrid model was constructed with mobile agents
which represent the Patients, and static agents which rep-
resent the Beds, Wards and Hospital Floors. All four agent
types exist within the hospital environment that controls
the time, patient entry and spatial position (Fig. 1). The
hierarchical approach was used when designing the hybrid
model. Patient agents, Bed agents and each Floor agent
exist within the main hospital environment which is the
top level agent. Each ward exists within the Floor agents
and Patients traversed the levels as they passed through
the model. The patient flows, screening and bed manage-
ment mechanisms were implemented using a DES ap-
proach. In contrast, the spread of the infection between
wards was modelled with a state-chart based technique.
The Patient agent type represents the individuals being

treated within the hospital. Each Patient has the follow-
ing state variables:

1. Colonization status: susceptible, undetected
colonized, detected colonized and infected.
‘Colonized’ means the person is asymptomatic but
is harboring the pathogen while ‘infected’ means
the person has the pathogen and is symptomatic.

2. Microbiology test: whether a test is required.
3. Room patient count: number of Patients in the

same room.
4. Ward: current ward.
5. Next Ward: The ward the patient will be

transferred to or lack of a ward, indicating
discharge.
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6. Length of stay: days to be spent in current ward.
7. Location: the geographic information system location

of the Patient within the hospital environment.
8. Distance to closest colonized patient: If a colonized

Patient is in the same Ward, the Patient will record
the distance from that colonized Patient.

Each Bed holds certain information which affects how
the Bed is managed during an outbreak:

1. Bed status: available for isolation, currently
contaminated or already reserved for isolation.

2. Multi-room status: single bed or multi-bed room.
3. Location: the geographic information system

location of the Bed within the hospital
environment.

The role of each Ward agent is to calculate the spread
of the pathogen. A Ward can either harbor the patho-
gen, where the spread is calculated daily or not. The
Floor agent contains the Wards as per hospital design
and controls the processes required to move Patients
throughout the hospital.

Process overview and scheduling
Processes within a hospital can take hours while others last
days. A time unit of 1 hour was chosen based on the

shortest frequency of events in the model. The model starts
at day zero and ends when no new colonizations have been
detected for 5 weeks. The model can be viewed on the Any-
Logic™ cloud at https://cloud.anylogic.com/model/6fe44e5
b-6276-44fd-95c8-ba93b3975262?mode=SETTINGS [12].
The hybrid model had three interacting sub-models;

Hospital Mechanics, Outbreak Management and Patho-
gen Transmission. The three sub-models are described
in detail in section 2.7. The Hospital Mechanics sub-
model controls the patient journey through the use of
DES. A patient enters the hospital, moves to their
assigned ward, and stays there for a predetermined
length of stay before being moved to another ward (if
necessary) or discharged. This simple process is compli-
cated by outbreak control measures which start once an
outbreak is confirmed. The Outbreak Management sub-
model may redirect patients from this simple process to
facilitate infection control procedures such as screening
or isolation. The Pathogen Transmission sub-model sim-
ulates the spread of the bacterial pathogen.

Design concepts
The three main methods of simulation modeling are
DES, ABS and system dynamics. Each technique has its
own strengths and limitations. DES is used to represent
individual-level heterogeneity, primarily where there is
an emphasis on the use of resources or queues [13]. DES

Fig. 1 Schematic of hybrid simulation model and information pathway used in this evaluation
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was used to simulate the patient’s journey through the
hospital, including isolation procedures, which consists
of discrete events with probabilities causing competition
for the agent’s next step (Additional file 1: Figure S1). A
weakness of DES is the difficulty to include granular de-
tail of the agents, which is a strength of ABS. ABS uses
inductive and deductive reasoning to discover patterns
of emergence [14]. ABS has three core concepts: agency,
dynamics and structure [15]. In the OXA-181 hybrid
model, agency gave the Patients, Beds and Wards indi-
vidual identities. Dynamics allowed events occurring
within the model to change when agents interacted with
their environment. For example, a Patient’s colonization
status becoming ‘detected colonized’ due to screening
protocols. The structure of ABS is not programmed into
the model, but emerges through the decisions of individ-
ual agents and their corresponding interactions. A hy-
brid model using ABS and DES was chosen to take
advantage of both methodological strengths.
Many stochastic processes are involved in simulating a

hospital outbreak. Each process in the model is driven
by a random number generator (RNG) and its corre-
sponding ‘seed’ that supplies the sequence of random
numbers used in the course of each simulation. Each
random choice made when executing the model will be
the same across simulations when the ‘seed’ is held con-
stant. Hospital processes have a major impact on a single
simulation, and introduce major variability in outcomes.
For example, a colonized patient being transferred to a
long stay ward dramatically increases the potential for
that patient to transmit the pathogen compared to being
discharged. As the hospital processes causing the major
variability are both known and moderately controllable,
blocking, a design of experiment technique [16], was in-
corporated to introduce deterministic characteristics to
the hybrid model. The deterministic characteristics were
loosened and the model became more stochastic when
the outbreak deviated from the calibrated path. This de-
viation occurs after the use or lack of use of WGS.
Blocking is a technique which removes unnecessary vari-
ation through adding the nuisance variable as an inde-
pendent variable in the model. The seeds for three
controlled RNGs represent these nuisance variables:
RNG one was used for the ward transfer probability and
length of stay distributions. RNG two was used in the
probability function which determines the number of
new colonized patients at each time step. RNG three
was used in choosing which patient was ‘randomly’
screened. These stochastic processes were kept consist-
ent between scenarios, ensuring that outcomes are com-
parable. A fourth RNG which was not controlled was
used in parameter variation in sensitivity analysis. It
might seem counterintuitive for a hospital outbreak
model to treat the spread and detection of the pathogen

as nuisance factors, although the purpose of this model
is to analyze the impact of pathogen WGS on the hos-
pital management of the OXA-181 outbreak. In this case
however, the conversion of the hospital processes to an
easier to handle deterministic model [17] is a concession
to the limited reliability and availability of information
regarding hospital processes and the specific spread
mechanisms of the pathogen. Even though the modelling
of hospital processes and pathogen spread is stochastic,
it does not capture the hospital’s operation closely
enough to ensure the validity of the introduced resulting
variability. Instead, this part of the model only serves as
the machinery for building the backdrop of epidemic
spread, against which to test the different screening re-
gimes for this specific outbreak. Therefore, the aim of
the calibration of this process is to reproduce the ob-
served outbreak data closely, as opposed to representing
the full range of possible outbreaks that can occur as a
result of the simplified modelled processes.
The model allows all four agents to interact with each

other and change state variables or characteristics based
on those interactions (Fig. 1). The model’s major inter-
actions were:

➢ Patient-Ward – when a Patient who is colonized en-
ters a Ward agent it starts daily transmission calcula-
tions for the Ward agent.
➢ Patient-Bed – a Patient notifies the Bed of a detected
colonization status so cleaning can occur after patient
discharge.
➢ Patient-Floor – the Floor agent randomly screens
Patients on a daily basis.
➢ Floor-Bed-Patient– the Floor can move a Patient
from a Bed, when it is required for isolation.

Initialization
Sourced from hospital admissions data, the model
started with 551 existing hospital patients currently oc-
cupying beds. These patients were spread across 13
wards on four different floors (Table 1). The first colo-
nized patient entered 1 day after initialization.

Input data
The model does not use external input data to represent
time-varying external processes.

Sub-models
Hospital mechanics sub-model
The Hospital Mechanics sub-model was designed to
simulate the patient journey throughout the hospital
from day zero through to the end of the outbreak (Add-
itional file 1: Figure S1). On day zero, an entry rate was
used to continually re-supply patients to the wards. Pa-
tient movements were informed by the Queensland

Elliott et al. BMC Infectious Diseases           (2020) 20:72 Page 4 of 12



Health Admitted Patient Data Collection dataset. This
provided data on admission ward, ward transfers and
length of stay for all patients who were admitted to one
of the 13 wards of interest between 1st April 2017 and
1st August 2017, a total of 4250 patient admissions. The
‘next ward’ parameter had a unique distribution for each

ward pairing. This meant a patient’s journey through the
hospital was always based on their previous ward. Ward
stay was estimated as unique Gamma distributions for
each ward pairing (current ward + next ward), using the
‘methods of moments’ approach [18]. A model ‘warm-
up’ period was avoided because data was available on

Table 1 Parameter description, values and sources used in the hybrid simulation model

Parameter Value Source

Initialization

Initial starting population (n) 551 Hospital admissions dataset

Number of floors and wards Level 5 (Ward A,B,C,D); Level 2 (Ward A,B,C,D,E);
SIU; GARU (Bunya, Banksia, Cassia)

Building floor plans

Hospital Mechanics Sub Model

Population entry rate, patients per day 24 Calibration

Ward admission, transfers and stays a see Additional file 1: Table S1-S3 Hospital admissions dataset

Susceptible-colonized sub model

Transmission parameter β Level 5 = 0.153, Level 2 = 0.14, SIU = 0.086,
GARU = 0.086

Calibration

Outbreak Management Sub Model

No WGS, outbreak number, patients with
confirmed colonization

7–15 Expert opinion

No WGS, outbreak start delay, patients with
confirmed colonization

2–5 Expert opinion

Microbiology test processing time, days 2 Expert opinion

Genome sequencing processing time,
days (SD) b

7 (0.5) Expert opinion

Daily probability of patient being screened Level 5 = 0.041, Level 2 = 0.043,
GARU = 0.055, SIU = 0.056

Calibration

Genome sequencing cost, AU$ (SD) c 354.70 (53.2) Clinical records

Microbiology test cost, AU$(SD) 79.23 (11.88) MBS item 69,306, PCR cost [35]

Bedroom cleaning cost, AU$(SD) d 70 (10.5) Clinical staff

Bed closure, AU$ (Q1-Q3) 216 (147–285) Page et al., 2017 [21]

Hourly wage for infection control nurse, AU$ (SD) 40.33 (6.05) Clinical staff & Queensland Health
wage rates [36]

Executive infection control meeting e, AU$ 462.03 (69.3) Clinical staff & Queensland Health
wage rates [36]

Increased virulence scenario

Infection chance 0.165 Tischendorf et al., 2016

Time till infection 27 days [11] Tischendorf et al., 2016

Mortality (in-hospital) 0.40 (0.5) Chang et al., 2015

Infection treatment costs, AU$ $2650 Chang et al., 2015

End-of-life costs, AU$ $19,696 Reeve et al., 2018

Environmental contamination scenario

ET odds-ratio for patients in contaminated beds 2.65 Mitchell et al., 2015

Bed contamination length, days 5–10 days Kramer et al., 2006

GARU geriatric assessment and recovery unit, SIU spinal injury unit, SD standard deviation, PCR polymerase chain reaction, ET environmental transmission
aGamma distribution assigned
bNormal distribution assigned
cComprising: sample prep 15.00, sequencing 105.00, analysis/storage 18.00, scientist 102.50, isolate handling 5.00, labor admin 33.33 biostats 75.85
dHospital cleaning staff, labor hourly rate 31.24, curtains 33.00, consumables 5.00
e3 senior consultants 215.10, Infection control nurse 59.03, senior admin 65.10, manager 45.81
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three patient movement parameters (initial ward, next
ward, length of stay) from existing patients in the hos-
pital at 1st April 2017 (day zero) and the patients enter-
ing the hospital after that date.

Outbreak management sub-model
The Outbreak Management sub-model governed the
screening and isolation procedures in the model as in-
formed by the state’s health department guidelines [19]
and local expert opinion from the hospital’s microbiology
and infection control nursing teams (Additional file 1:
Figure S1). This sub-model has three phases:

� Pre-outbreak: Here patients were screened by
culture-based and phenotypic microbiology tests.
Patients in two specified wards were screened weekly
and upon entry into the ward [19]. Random
screening also occurred such that every Floor had a
daily probability of the occupying patients getting
screened. The random screening represented
hospital staff searching for other pathogen outbreaks
and patients that were routinely screened prior to
specific procedures.

� Outbreak identification: An outbreak was typically
declared when five patients were colonized,
however, this threshold was lowered to one patient
colonized if whole genome sequencing was routinely
undertaken.

� Outbreak control: six processes were activated when
an outbreak was confirmed:
1. Patients were isolated in Level 5 Ward D, and

once full, cohorting started in Level 5 Ward C.
‘Cohorting’ is where patients who are colonized
room-in together. Patients in the geriatric and
spinal injury units were isolated or cohorted on
their own floors;

2. All patients in the same room as a detected
colonized Patient were screened;

3. All beds with a colonized Patient were flagged for
cleaning before another Patient entered the Bed;

4. Executive meetings on outbreak control
occurred daily, then weekly when fewer than five
colonized Patients were detected per week;

5. Patients in the geriatric and spinal injury units
were screened weekly; and

6. 29 days after the outbreak started, a hospital-wide
screening took place replicating a real-life
outbreak management action.

The Outbreak Management sub-model also accrued
health system costs, which were calculated in 2018 Aus-
tralian dollars (1 AUD = 0.69 USD [20]). Individual item
costs were calculated through a detailed inventory of all
resources used, and assigned to each microbiology test

(US$55), WGS (US$246), bed closures (US$150) [21],
bed cleaning (US$49), additional nursing time (US$28/h)
and executive infection control meetings (US$320)
(Table 1). While actual nursing hours may not increase
during an outbreak, nursing staff are redirected to out-
break management duties such as contact precaution,
patient isolation, environmental decontamination and
wider patient screening activities. An opportunity cost of
US$28 per hour was assigned to these duties. Executive
meetings was costed at US$320 representing the oppor-
tunity cost of time spent by three senior medical consul-
tants, an infection and prevention control nurse, senior
administrator and a service manager.

Pathogen transmission sub-model
The Pathogen Transmission sub-model controlled the
ward-level population transmission dynamics. Pathogen

spread was based on the formula, 1− expf−βCN g [22, 23]
where β is the transmission parameter estimated by
model calibration (Section 2.8), C is the number of colo-
nized patients in the ward, N is the number of patients
in the ward, excluding any patients who were isolated,
and C and N values are updated daily. The transmission
formula calculated the daily probability of a susceptible
patient becoming colonized and is based on the
frequency-dependent transmission term for stochastic
epidemic models [22]. The number of patients colonized
each day was calculated by as a binomial random vari-
able, parameterized using the probability a single suscep-
tible patient is colonized and the number of susceptible
patients. The Patient parameter ‘Distance to closest col-
onized patient’ was used to select which patients were
colonized, with smallest distance being selected.

Model calibration
Empirical information on the OXA-181 transmission
rate was unavailable. We therefore calibrated the trans-
mission values required for the spread and detection of
the pathogen to fit the model to reproduce the observed
known colonizations in the real outbreak. The calibra-
tion involved 50,000 simulations of the OXA-181 hybrid
model to find the smallest result of the calibration for-
mula (Table 2). The calibration process measured the
number of detected colonizations at day 69, 83 and 111
in each ward and the total across all four locations at
the end of the outbreak. Days 69 and 83 were when
there were spikes of colonization detection and day 111
was when the last detection occurred in the actual out-
break. The calibration formula aggregated the difference
in colonization detections between the model and the
real outbreak at each of the 13 floor-time point combi-
nations, including total difference (Table 2). These dates
were used to replicate the time it took to detect the
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pathogen within the hospital and then the speed of out-
break cessation once targeted infection control started.
Note that hospital wide screening occurred in the real
outbreak on day 85. The model was calibrated with a
fixed WGS test turnaround time of 7 days and an out-
break starting number of five patients.

Simulation experiments
In total, seven scenarios were investigated as follows:

Scenario 1. Actual Outbreak or WGS (late) – this was
the base scenario of the actual OXA-181 outbreak
in 2017 and the known cases of colonized patients.
WGS was undertaken but only later in the outbreak
as described above (Section 2.1.2).

Scenario 2. No WGS – this scenario had no access to
WGS and may be the common situation of most
publicly government-funded hospitals in 2018.
Without WGS information, a larger number of
patients needs to be detected with the same
pathogen strain and the infection control team

needs additional time to review the information
before declaring an outbreak.

Scenario 3. WGS (early) – this was the optimal early
sequencing scenario where WGS was used
routinely with suspected patients, and an
outbreak can be declared with the first positive
anomalous (OXA-181) detection.

Scenario 4. Environmental contamination and no
WGS – this was the same as Scenario 2 but
assumes that cleaning processes did not
eradicate the pathogen. Hospital pathogens can
persist on surfaces for months and can be a
continuous source of transmission without
regular preventive surface disinfecting [24]. In
this scenario we allowed the Bed agent to
become contaminated and contribute to the
pathogen transmission. We assumed for each
patient colonised there was a 50% chance of
colonization spreading to other beds in same
room and surviving on those beds for 5–10 days
[24]. An environmental transmission odds ratio
of 2.65 [25] was used to calculate the daily

Table 2 Model calibration: Parameter variation range, calibration formulae and results

Parameter Parameter calibration rangec Optimal calibration results Calibration #2 results Calibration #3 results

Level 2 Beta valuea 0.001–0.2 0.14 0.094 0.139

Level 5 Beta valuea 0.001–0.2 0.153 0.164 0.185

SIU Beta valuea 0.001–0.2 0.086 0.068 0.08

GARU Beta valuea 0.001–0.2 0.086 0.074 0.089

Lvl5 microbial test prob.b 0.01–0.07 0.041 0.055 0.04

Lvl2 microbial test prob.b 0.01–0.07 0.043 0.047 0.045

SIU microbial test prob.b 0.01–0.07 0.056 0.041 0.041

GARU microbial test prob.b 0.01–0.07 0.055 0.046 0.059

RNG 1 Seed 1–1000 701 457 952

RNG 2 Seed 1–1000 382 697 129

RNG 3 Seed 1–1000 465 810 348

Detected colonizations Actual outbreak Optimal calibration Calibration #2 Calibration #3

Day 69:
Lvl5, Lvl2, GARU, SIU

6, 1, 1, 1 7, 3, 0, 1 8, 0, 0, 1 10, 1, 1, 1

Day 83:
Lvl5, Lvl2, GARU, SIU

11, 3, 1, 4 10, 6, 0, 1 16, 0, 1, 3 12, 1, 2, 1

Day 111:
Lvl5, Lvl2, GARU, SIU

25, 13, 14, 8 21, 10, 5, 8 23, 0, 11, 6 19, 4, 12, 1

Total 72 75 75 73

Calibration Formulaed abs (Lvl5 day69-AO Lvl5 day69) + abs (Lvl5 day83-AO Lvl5 day83) + abs (Lvl5 day111-AO Lvl5 day111) + abs (Lvl2
day69-AO Lvl2 day69) + abs (Lvl2 day83-AO Lvl2 day83) + abs (Lvl2 day111-AO Lvl2 day111) + abs (GARU day69-AO
GARU day69) + abs (GARU day83-AO GARU day83) + abs(GARU day111-AO GARU day111) + abs(SIU day69-AO SIU
day69) + abs(SIU day83-AO SIU day83) + abs(SIU day111-AO SIU day111) + abs(Total-AO Total)

Lvl5 Level five, Lvl2 Level two, GARU Geriatric and Rehabilitation Unit, SIU Spinal injury unit, AO Actual outbreak, RNG random number generator, abs absolute
value, prob Probability
aBeta value used in transmission formulae, 1− expf−βCN g
bThe daily probability a patient in that floor will be randomly screened
cThe values tested across 50,000 simulations
dDays 69 and 83 were chosen due spikes in colonization detections and day 111 was when the last detection occurred
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probability of a patient in a contaminated bed
being colonized.

Scenario 5. Environmental contamination and early WGS
– this was the same as above but with early WGS.

Scenario 6. Virulent and no WGS – this is Scenario 2
but where the pathogen is more harmful to patients
by causing more invasive disease (e.g. bloodstream
infection). The OXA-181 gene was carried on a
highly mobile plasmid (a genetic element that can
readily spread between bacterial strains and across
species). This scenario represents the plasmid being
present in pathogenic bacteria, with a higher pro-
portion of colonized patients experiencing clinical
disease, and standard therapy (e.g. beta-lactam anti-
biotics, including carbapenems) being compromised
by the presence of the OXA-181 carbapenemase. In
this scenario, we included a ‘colonization to infec-
tion’ probability of 0.17 [26] and a probability of
death for infected patients of 0.40 [27]. The cost of
US$1835 was used for treatment of infections [27]
and US$13,640 for end-of-life care [28].

Scenario 7. Virulent and early WGS – this is Scenario 3
plus the situation where the pathogen is more
harmful to patients.

Analyses
The outcomes included the: number of colonized pa-
tients; number of detected colonized patients; number of
bed closures and accumulated hospital costs. Each sce-
nario consisted of 1000 iterations. The model aggregated
the sum of the events (using counters) and all outcomes
that emerged from the interactions of the above sub-
models and their probabilities, costs, assigned distribu-
tions and formula inputs. To address uncertainty of al-
ternative calibration-derived values, one-way sensitivity
analyses were performed using 1000 iterations for each
model change. To address uncertainty of some inputs
(e.g. cost of a bed closure or WGS) probabilistic sensitiv-
ity analyses were performed for each scenario.

Results
Calibration results
The parameters, the parameter variation, calibration
formulae and calibration results are shown in Table 2.
The second and third best calibration outcomes were
presented to show the consistency of the calibration.
The OXA-181 outbreak simulation successfully matched
the real-life outbreak by starting with only 9–10 detec-
tions by day 69 and stopping the outbreak at 72 detected
colonizations (Table 2).

Evaluation of WGS strategies
Our analysis indicated that health system spending of
US$19,469 on pathogen sequencing, compared with no

WGS, avoided 77 OXA-181 colonizations and saved
US$212,455 in outbreak resources (Table 3). The early
WGS strategy (Scenario 3), compared with no WGS
(Scenario 2), had US$485,836 in outbreak cost savings
and 151 fewer colonizations. Early WGS was the domin-
ant scenario in both the environmental contamination
and virulent pathogen scenarios (Table 4). Early WGS
predicted 40 fewer patients would become infected and
US$559,710 of outbreak cost savings in the virulent
pathogen scenario (Scenario 6 vs Scenario 7). The envir-
onmental contamination scenarios calculated 120 fewer
detected colonizations and US$406,286 fewer costs (Sce-
nario 4 vs Scenario 5). The largest cost component in
each outbreak simulation was microbiology screening
cost (varying from 44.3 to 89.2% of total costs) while the
cost of sequencing was only 6% of the total costs in the
actual outbreak (late WGS scenario, Scenario 2) and
below 2% in scenarios with early WGS (Scenario 1).
A sensitivity analysis based on the second and third

best calibration results was undertaken to check the
consistency of the main findings across different ‘seed’
settings. Each calibration represents an alternative OXA-
181 outbreak pathway. This sensitivity analysis showed
wide variation in the no WGS scenario, leading to vari-
ation in the base results: the early WGS scenario saved
between US$440,000 to US$640,000 and between 117 to
213 in detected colonizations. However, the main con-
clusions of the study remains unchanged; early WGS
was expected to reduce health system costs and avoid
significant numbers of colonizations.

Discussion
We combined two modeling methods, ABS and DES, to in-
corporate the process-driven features of a hospital environ-
ment with the individual details of patient-patient pathogen
transmission. This is the first study to use a hybrid agent
based/discrete event simulation model to investigate the
impact of outbreak management interventions on the
spread of pathogens throughout a hospital [6]. We created
a flexible model capable of integrating a range of pathogen
transmission features like environmental contamination, in-
fection and mortality. We also were able to introduce a
range of outbreak control policies such as hospital wide
screening, cohorting and floor specific isolation protocols.
Using actual colonization and infection data to calibrate

healthcare system models has been noted as a key aspect
to improve future modeling [29]. A major strength of this
study was the use of real-world colonisation data and
patient ward transfer data over a 5 month outbreak to
inform pathogen transmission and patient movement. We
predicted that WGS was effective at diminishing the
pathogen spread and lowering hospital outbreak costs.
The key accumulated costs were microbiology culture
tests and bed closure costs. Although WGS had the
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highest per item cost, it dramatically shortened the out-
break duration and limited the wider use of WGS.
Hybrid modeling provides clinicians with the informa-

tion to assist decision-making in clinical situations and
justify the use of new strategies. Healthcare system mod-
eling is trending towards increased use of hybrid model-
ing, as the focus shifts from operational and process
questions (patient flow, logistics and healthcare opera-
tions) to resources and design issues (capacity planning,
resource allocation and program evaluation) [6]. A holis-
tic healthcare simulation model must incorporate four
interacting perspectives: resource allocation; health dif-
fusion; population dynamics; and individual behavior
[30]. The OXA-181 hybrid model encompassed these
perspectives through features such as bed capacity, ward
population dynamics and patient specific transmission.
Future hybrid outbreak modeling could expand on the
scope of work in our model by encompassing additional
spillover effects. For example, controlling a hospital-
infectious disease outbreak of a single pathogen has in-
direct impacts on the wider hospital system such as, in-
creasing the number of isolation rooms available and
avoiding delays in elective surgery.
Several limitations of this study are noted. Simulation

modelling for hospital acquired infections are dominated
by stochastic models [31] that are preferred when
chance plays a large role of whether an event occurs, es-
pecially in smaller populations. We combined both sto-
chastic and deterministic features in the model. A

disadvantage of stochastic models in individual based
simulation is the uncontrollable extent of randomness
and the occurrence of stochastic fade-outs, where the
outbreak fails to spread [32]. The deterministic charac-
teristics of our model, introduced through calibrating
the spread of the outbreak to real outbreak data, avoided
stochastic fade-outs but possibly overestimated the num-
ber of colonizations. The OXA-181 model is not entirely
a deterministic model, once the outbreak was identified
the ongoing processes are stochastic as shown by the
range of outcomes in Scenario 2. Expert opinion was re-
quired for a number of assumptions underpinning the
scenarios we assessed, that is, no WGS, increased viru-
lence and environmental contamination scenarios. Fur-
ther validation using real-world data would be beneficial.
The empirical findings of this model were context-
specific and are unlikely to be generalizable to other bac-
terial outbreaks at other hospitals. However, the hybrid
model can be adapted to other settings through its input
driven ward and hospital level layout. For example,
modeling across multiple bacterial outbreaks occurring
concurrently is more realistic in a large metropolitan
hospital, including daily use of sequencing, to support
decisions to adopt WGS routinely as part of hospital
policy. The data to inform such a simulation model was
not available but future work on this is underway.
Adapting this model to other outbreaks would require
outbreak specific detection data to calibrate the model,
ward transfer rates from hospital administration data

Table 4 Result summaries for the outcomes measures from 1000 probabilistic simulations for environmental and virulent scenarios

Total number of: Environmental contamination Increased Virulence

No WGS
(Scenario 4)

Early WGS
(Scenario 5)

No WGS
(Scenario 6)

Early WGS
(Scenario 7)

Colonized patients (SD) 234 (179) 2 (0) 256 (157) 3 (0)

Env contamination sites (SD) 33 (28) 0 (0)

Infected patients (SD) 41 (25) 1 (0)

Deaths (SD) 6 (5) 0 (0)

Detected patients (SD) 123 (86) 2 (0) 119 (70) 1 (0)

Sequencing tests (SD) 4 (0) 2 (0)

Bed closures (SD) 720 (508) 9 (1) 692 (424) 6 (2)

Total costs $US (SD) 451,280 (252,232) 44,994 (1954) 606,367 (318,967) 46,657 (2802)

Whole genome sequencing costs 985 (20) 502 (49)

Microbiology testing costs 259,910 (119,687) 40,141 (1950) 268,621 (114,042) 40,685 (2543)

Cleaning costs 46,310 (32,867) 476 (59) 44,328 (27,333) 370 (198)

Nursing costs 4982 (3698) 86 (5) 4843 (3034) 45 (9)

Infection control executive meetings costs 31,802 (22,710) 1925 (34) 31,369 (18,619) 1941 (101)

Bed closure costs 108,277 (76,740) 1381 (139) 104,019 (63,868) 915 (339)

Infection treatment costs 74,828 (46,413) 2200 (732)

Death costs 78,359 (61,973) 0 (0)

NB: Empty cells denote where the outcome measures which were not modelled as part of the scenario
SD standard deviation, Env Environmental, US United States, WGS whole genome sequencing
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and the corresponding hospital layout. In the hybrid
model, WGS currently plays a role in identifying strains
and identifying the source of outbreaks. Antimicrobial
susceptibility was not parameterized in the hybrid model
because the clinical utility and application of WGS is
still emerging [33]. Future work is required to model in
what capacity WGS can change infection control and
prevention.
Several lessons were learned regarding the construc-

tion and calibration of the complex and detailed OXA-
181 hybrid model. Recreating a real-life outbreak to the
detail of patient ward movement created a model vulner-
able to stochastic variability and ‘noise’. Blocking was
successfully used to limit the outbreak variability [16].
Although less computationally intense approaches in re-
ducing the variability in patient movement across simu-
lations is worth exploring. Each hospital outbreak
simulation model has to take into account the different
possible transmission pathways, outbreak control mea-
sures and patient risk factors specific to the causative
pathogen. Depending on the pathogen there are up to
five transmission routes, seven outbreak control mea-
sures, four hospital processes and four infection spread-
ing possesses that could be included in a hospital
outbreak model [34]. The elements to include need to
be thoroughly considered to ensure a parsimonious
model but still captures all essential outbreak compo-
nents necessary for reporting.
In conclusion, we incorporated agent-based, discrete-

event and geospatial system modeling to develop a hy-
brid simulation model for evaluating a hospital outbreak.
We used the model to quantify the economic and clin-
ical impact of introducing whole genome sequencing
into HAI outbreak management. Early WGS was pre-
dicted to contain an E. coli OXA-181 outbreak and re-
duced hospital costs. This study highlights the strengths
and limitations of using hybrid modeling to evaluate
hospital outbreak interventions.
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