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Abstract

Background: Campylobacter jejuni is a leading cause of bacterial diarrhea worldwide, and increasing rates of
fluoroquinolone (FQ) resistance in C. jejuni are a major public health concern. The rapid detection and tracking of
FQ resistance are critical needs in developing countries, as these antimicrobials are widely used against C. jejuni
infections. Detection of point mutations at T86I in the gyrA gene by real-time polymerase chain reaction (RT-PCR) is
a rapid detection tool that may improve FQ resistance tracking.

Methods: C. jejuni isolates obtained from children with diarrhea in Peru were tested by RT-PCR to detect point
mutations at T86I in gyrA. Further confirmation was performed by sequencing of the gyrA gene.

Results: We detected point mutations at T86I in the gyrA gene in 100% (141/141) of C. jejuni clinical isolates that
were previously confirmed as ciprofloxacin-resistant by E-test. No mutations were detected at T86I in gyrA in any
ciprofloxacin-sensitive isolates.

Conclusions: Detection of T86I mutations in C. jejuni is a rapid, sensitive, and specific method to identify
fluoroquinolone resistance in Peru. This detection approach could be broadly employed in epidemiologic
surveillance, therefore reducing time and cost in regions with limited resources.
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Background
Campylobacter infection is the leading zoonotic cause of
foodborne illness in the world, with 400 million acute
cases of diarrheal disease reported worldwide annually
[1]. C. jejuni is a leading bacterial cause of human diar-
rheal infections [2, 3] in high income countries, but the
burden of campylobacteriosis is markedly elevated in
low-to-middle income countries (LMIC) and contributes

significantly to childhood mortality and poor linear
growth in these regions [1, 4–6]. In addition to poten-
tially severe dysentery, campylobacteriosis may also re-
sult in longer-term secondary complications including
Guillain-Barre syndrome and reactive arthritis [1]. Anti-
biotics usually considered for treatment of campylobac-
teriosis include macrolides and fluoroquinolones (FQs)
due to their relatively low cost, limited short-term side
effects and ease of administration [7].
Globally, the emergence of FQ resistance in C. jejuni

has become a major problem in treating undifferentiated
dysentery and campylobacteriosis [7–10]. FQs, including
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ciprofloxacin, are among the most widely used antibi-
otics for the treatment of travelers’ diarrhea. However,
increasing rates of resistance to these drugs have been
reported worldwide [11], with significant treatment im-
plications for the management of Campylobacter infec-
tions in developing settings with limited access to
resources and alternative therapeutic choices [12–14].
The antibacterial activity of ciprofloxacin and other

FQs is due to their ability to bind and inhibit the DNA
gyrase necessary for genomic DNA replication. Resist-
ance to ciprofloxacin is mediated by mutations in the
gyrA gene, with the single-step T86I amino acid change
as one of the most common mutations associated with
decreased susceptibility in Campylobacter [1, 7–10]. Al-
terations of nucleotide 257 (codon 86) from ACA to
ATA of the gyrA gene result in a threonine to isoleucine
substitution in the GyrA protein and confer high- level
resistance to ciprofloxacin [15–20].
Numerous molecular techniques based on polymerase

chain reaction (PCR) testing may detect mutations asso-
ciated with resistance to FQ and include sequencing, de-
tection of polymorphisms, and denaturing gradient gel
electrophoresis [9, 16, 21, 22]. In recent years, several of
these genotypic methods for the detection of FQ-
resistant Campylobacter have been validated. To date, all
have identified the T86I mutation through nucleic acid
amplification [17, 23–25]. However, there are few valid-
ation studies among Campylobacter isolates from LMICs
where rates of antimicrobial resistance (AMR) are par-
ticularly high [26, 27].
The primary goal of this study was to evaluate a RT-

PCR assay for detection of the T86I gyrA gene mutation
among C. jejuni isolates from Peru, a middle-income
country with rapidly rising rates of FQ-resistant Cam-
pylobacter [27] and a substantial burden of campylobac-
teriosis [6, 26–28].

Methods
Study sites
A surveillance study for AMR in enteric pathogens in
Peru occurred between January 2001 to December 2010

at nine hospital and community laboratories in the cities
of Lima, Cusco, and Iquitos [27]. Stool isolates identified
as Campylobacter spp. were placed in Cary-Blair trans-
port media and stored at 4 °C at the study site [27].
Every two weeks, isolates from each study site were
transported to the U.S. Naval Medical Research Unit No.
6 (NAMRU-6) laboratory at 4 °C for further testing.
After microbiological confirmation using routine culture
and biochemical methods, all isolates were stored at −
80 °C in Peptone Broth with 15% glycerol.
A random selection of 200 archived stool isolates from

children between 1month to 15 years old during period
2006–2010 were selected from three hospitals in Lima,
Peru (Instituto Nacional de Salud del Niño, Hospital
Nacional Docente Madre-Niño, and Emergencias Pedia-
tricas) for antimicrobial susceptibility testing and detec-
tion of T86I gyrA mutation.

Culture and isolation of C. jejuni
All archived isolates that were previously identified as
hippurate hydrolysis-positive were re-cultured and re-
isolated according to methods described elsewhere [27]
for further testing.

Extraction of C. jejuni DNA
Isolates were reactivated on Columbia agar (Becton,
Dickinson and Company, Sparks, MD 21152 USA) that
was supplemented with 5% sheep blood after incubation
for 48 h at 42 °C under micro-aerobic conditions. One
loop of colony growth was then used for DNA extraction
which was performed by QIAamp DNA Mini Kit (Qia-
gen GmbH, D40724 Hilden, Germany), following the
manufacturer’s guidelines. The final concentration of
DNA was adjusted to 10 ng/μl.

Molecular confirmation of C. jejuni species
C. jejuni isolates underwent further species confirmation
by PCR. Primers designed by Vandamme et al. [29] were
used to amplify internal glyA fragments and detect a
773-bp amplification product consistent with a C. jejuni
species (Table 1). For PCR reaction, 11 μl of AmpliTaq

Table 1 Primers and probes used

Target gene Oligonucleotide sequence (5′-3′) Reference

glyA CATCTTCCCTAGTCAAGCCT Vandamme, et al. [29]

AAGATATGGCTCTAGCAAGAC

gyrA TGCTGTTATAGGTCGTTA This study

CCTTGTCCTGTAATACTTG

gyrA Wild type HEX 5′-CCCACATGGAGATACAGCAGTTTATG-3′-BHQ2 This study

gyrA point mutation T86I 6-FAM 5’CCCACATGGAGATATAGCAGTTTATG-3’BHQ1 This study

gyrA GCCTGACGCAAGAGATGGTT Bakeli, et al. [17]

TTTGTCGCCATACCTACAGC
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Gold PCR Master Mix 2X, (AB Applied Biosystems, Fos-
ter City, CA 94404, USA), 2 μl of DNA [10 ng/ μl] and
primers at final concentration of 0.4 μM.DNA were
mixed for a final volume of 25 μl. Amplification was
performed by Veriti Thermal Cycler (AB Applied Biosys-
tems, Singapore) using the parameters: initial denatur-
ation (5 min 95 °C), twice (1 min 94 °C, 1 min 64 °C, 1
min 72 °C), twice (1 min 94 °C, 1 min 62 °C, 1 min 72 °C),
twice (1 min 94 °C, 1 min 60 °C, 1 min 72 °C), twice (1
min 94 °C, 1 min 58 °C, 1 min 72 °C)), twice (1 min 94 °C,
1 min 56 °C, 1 min 72 °C) 30 cycles (1 min 94 °C, 1 min
54 °C, 1 min 72 °C) and final extension step 10 min at
72 °C as recommended by Vandamme et al. [29]. Post-
amplification, PCR products were visualised by 2%
UltraPure agarose gel (Invitrogen, Carlsbad, CA 92008,
USA) with a SYBR Safe stain (1X) (Invitrogen, Eugene,
Oregon, 541.4658300, USA).

Determination of phenotypic resistance
Positively-identified C. jejuni isolates were tested for anti-
biotic susceptibility using the E-test to determine the
minimum inhibitory concentration (MIC) for ciprofloxa-
cin at a range of 0.002-32 μg/mL (AB BioMérieux, bio-
Mérieux SA RCS LYON 69280 Marcy-l’Etoile, France)
[30]. Isolates also underwent disk-diffusion testing [27]
using Clinical and Laboratory Standards Institute (CLSI)
guidelines to determine susceptibility [31]. C. jejuni ATCC
33560 was used as the quality control organism (American
Type Culture Collection, Manassas, Virginia, USA).

Determination of genotypic resistance
A blinded molecular detection of antimicrobial suscepti-
bility was performed on all isolates to generate unbiased
results. Isolates were tested for the presence of the T86I
gyrA resistance mutation using real-time PCR. Specific
TaqMan probes and primers (Table 1) were designed by
AlleleID 7 software (PREMIER Biosoft International, Palo
Alto, California, USA). For a final volume of 20 μl for the
PCR reaction, the following were used: 10 μl of Rotor
Gene Multiplex PCR (QIAGEN GmbH, Hilden,
Germany), 1 μl of DNA [10 ng/ μl,] primers, and probes at
final concentration of 0.5 μM and 0.25 μM respectively.
DNA amplification and the resultant PCR product was

analysed using the Rotor Gene Q version 1.7.94 (QIA-
GEN GmbH, Hilden, Germany), using the following

parameters: pre-denaturation at 95 °C for 5 min, 40 cy-
cles of denaturation at 95 °C for 10 s, annealing at 55 °C
for 30 s, and extension at 72 °C for 20 s with acquisition
in green and yellow channels.

Detection of ciprofloxacin resistance for allelic
discrimination
Detection of T86I point mutation in the gyrA gene of C.
jejuni was carried out by allelic discrimination. A fluor-
escent signal from only the HEX dye with acquisition in
the yellow channel indicated detection of the wild type
(mutation-negative) gene, while the presence of 6-FAM
dye fluorescence with acquisition in green channel indi-
cated detection of the T86I mutation (mutation-posi-
tive). Absence of both fluorescent signals indicated the
gyrA gene was not amplified as observed with C. jejuni
in no-template controls (NTCs) and C. coli isolates. For
discrimination of positive and negative mutants, we used
a wild-type control (ATCC 33560), a T86I mutant that
was identified by sequencing the gyrA gene, and a non-
template controls for each run, with a threshold of 0.1
for genotypic discrimination. Fluorescent signals were
interpreted automatically using sequence detection soft-
ware using the Rotor Gene Q version 1.7.94 (QIAGEN
GmbH, Hilden, Germany).

Validation of T86I gyrA real-time PCR assay diagnostic
performance
Sensitivity and specificity were determined for the T86I
gyrA resistance mutation real-time PCR assay using
disk-diffusion and E-test as gold standards. Confidence
intervals (95%) for sensitivity and specificity were deter-
mined without continuity correction [32, 33].

Detection of amino acid mutations in gyrA to confirm
PCR results in a subset of isolates
Sequencing of the amplified fragment of gyrA gene from
a random subset of 100 of the 189 C. jejuni study iso-
lates were performed to confirm the specific point amino
acid mutation T86I in the sequence by, using primers
(Table 1) and PCR conditions already described [17], ex-
cept that the pre-denaturation time was 1 min and the
annealing time was 5 s.

Table 2 Susceptibility of 189 C. jejuni isolates, and point mutation T86I of the gyrA gene

Phenotype No. of
Isolates

CIP_Disk diffusion NA_Disk diffusion CIP_MIC Real-Time PCR

Range (mm) Range (mm) Range (μg/mL) gyrA gene (n)

CIP-S and NA-S 44 29–50 19–37 0.008–1.0 Wild type 44

CIP-R and NA-R 141 6–11 6–9 4–32 T86I mutation 141

CIP-S and NA-R 4 24–38 6 0.047–0.19 Wild type 4

CIP-S ciprofloxacin sensitive, CIP-R ciprofloxacin resistant, NA-S nalidixic acid sensitive, NA-R nalidixic acid resistant, MIC minimal inhibitory concentration
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Ethical considerations
The Institutional Review Board of the U.S. Naval Med-
ical Research Unit 6 in Peru (FWA 00010031) deter-
mined that the testing of these bacterial isolates
(Protocol No PJT.NMRCD.HURS03) did not constitute
human subjects research.

Results
Of the 200 Campylobacter isolates, 189 were confirmed
as C. jejuni and 11 as C. coli using biochemical and mo-
lecular techniques [29]. Only the 189 C. jejuni isolates
were used for the validation study and underwent anti-
microbial susceptibility testing.
Phenotypic detection of AMR identified 74.6% (141/

189) of the C. jejuni isolates as resistant to ciprofloxacin
and naldixic acid by disk-diffusion and E-test (Table 2).
Further, the molecular detection of the T86I gyrA muta-
tion was observed in 100% (141/141) of ciprofloxacin-
resistant phenotypes and none of the ciprofloxacin-
sensitive phenotypes (Table 3). The T86I gyrA mutation
detection assay thus demonstrated a sensitivity of 100%
(95% CI 97.35–100%) and a specificity of 100% (95% CI
92.6–100%) in comparison to conventional antimicrobial
susceptibility testing techniques. Moreover, this assay
correctly identified all C. jejuni isolates in addition to
the ciprofloxacin resistant/sensitive phenotypes, while
no C. coli isolates were detected.
Seventy-two of the C. jejuni isolates that were positive

with the T86I PCR assay and 28 of negative wild-type
strains were further selected for DNA sequencing of
gyrA as previously described [17]. The sequencing results

of gyrA mutant and wild-type isolates are presented in
Table 4. All 72 C. jejuni isolates demonstrated amino-
acid substitutions at codon 86 (T→ I). None of the 28
wild-type isolates demonstrated a point mutation at gyrA
nucleotide position 257. The amino-acid substitution
V149I was also observed in 28 ciprofloxacin resistant
isolates as previously reported, with none of the
ciprofloxacin-susceptible isolates showing this change.
Table 5 shows the distribution of C. jejuni isolate by
hospital and by year, as well as the percentage of those
that carried the T86I gyrA mutation from 2006 to 2010.
Overall, the prevalence of the gene mutation appeared in
65–75% of all isolates for each year until 2010, when it
was identified in 100% of all isolates tested.

Discussion
Increasing AMR in C. jejuni is a major global public
health threat. It is important to seek alternatives to
conventional phenotypic testing of AMR in C. jejuni
due to the limited availability of resources to isolate
and characterize enteric pathogens in developing
countries. This study is one of only a few studies that
have validated this method in LMICs, including Latin
America.
We have previously described increasing rates of AMR

in Campylobacter isolates in Peru [27]. Our data in this
study suggest that an increased prevalence of the T86I
gyrA mutation in C. jejuni may be the cause of this rise
in FQ resistance (Table 5). The very high sensitivity
(100%) and specificity (100%) demonstrated by T86I
gyrA mutation real-time PCR assay confirms it as a valid
alternative resistance assay to conventional fluoroquino-
lone susceptibility testing in C. jejuni isolates, consistent
with the high sensitivity and specificity described else-
where [15, 16, 18]. This data set may shed light upon
the feasibility of this technique to be broadly employed
in other regions for detecting changes in ciprofloxacin
resistance among C. jejuni. Although there are other

Table 3 Comparison of Real Time PCR results with ciprofloxacin
antimicrobial susceptibility by E-Test

Real Time PCR T86I Total no. of isolates
CIP_MIC_Sensitive

Total no. of isolates
CIP_MIC_Resistant

Wild type (48) 48 0

Mutation (141) 0 141

Table 4 Correlation between Real-Time PCR T86I mutation MICs values of ciprofloxacin and mutations of the gyrA gene

Real Time PCR
Mutation T86I

Strains
(n = 100)

CIP_MIC
(μg/mL)

T86I A120V D144N V149I H81 G110 S119 Y152 S157 V161

ACA GCC GAT GTT CAC GGC AGT TAT AGC GTT

ATA GTC AAT ATT CAT GGT AGC TAC AGT GTC

Positive 28 12–32 T T – – T – C – T C

Positive 28 12–32 T T – A T – C – T C

Positive 7 32 T T – – T T C – T C

Positive 3 12–32 T T – – T – C C T C

Positive 6 6–32 T – – – – – – – – –

Negative 21 0.016–0.190 – T – – T – C – T C

Negative 1 0.064 – T – – T T C – T C

Negative 1 0.032 – T A – T – C – T C

Negative 5 0.023–0.047 – – – – – – – – – –
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mutations associated with ciprofloxacin resistance in
gyrA gene of C. jejuni, the T86I mutation is the most
frequent mutation encountered worldwide [17]. A differ-
ent mutation at the same codon, T86A, has also been
described in C. jejuni isolates with resistance to nalidixic
acid [16–18], but its association with resistance to later-
generation FQs such as ciprofloxacin is less clear. The
present study found no T86A mutations in C. jejuni iso-
lates through gyrA sequencing.
In these Peruvian isolates, the T86I substitution was

the main amino-acid change associated with high-level
resistance to ciprofloxacin, as described in other settings
[9, 16, 17, 22, 28]. Nonetheless, these findings may be
specific to given geographical regions with other com-
mon amino-acid substitutions (e.g., V149I) being associ-
ated with FQ resistance elsewhere [34]. However for
some of these amino-acid substitutions their relevance
as a mediator of AMR have been placed into question
with their presence being found in sensitive C. jejuni
isolates as well as being absent in a large proportion of
FQ-resistant isolates [17, 28]. Until additional
characterization studies are performed, questions will re-
main about the significance of these other mutations in
the epidemiology of AMR in Campylobacter.
Overall, this technique offers an alternative, reliable,

and rapid means for detecting FQ resistance in C. jejuni
isolates, thus avoiding more complex susceptibility test-
ing for this fastidious microorganism. With the recent
alarming rise in FQ-resistant Campylobacter in Peru [6,
27, 35], this assay may serve as a useful tool for quality
control of conventional Campylobacter antibiotic resist-
ance testing, such as disk-diffusion or E-test, in both
clinical care and in AMR surveillance.
We utilized E-test strips instead of broth microdilution

for confirmatory susceptibility testing, as previously vali-
dated [36]. A limitation of our study was the lack of iso-
lates with intermediate susceptibility to FQs, for which
the detection of a molecular determinant of resistance
may be useful for antibiogram interpretation, particularly
in instances where isolates are non-susceptible to alter-
native antimicrobials such as macrolides, which has been
noted in Peru [27]. Nonetheless, given the high sensitiv-
ity and specificity of the results herein presented, this
assay could be a useful tool for the correct identification

of C. jejuni as well as detection of FQ-resistant isolates
from stool samples in developing countries, potentially
saving time and money. Additionally, this assay may be
applied as a reference control for traditional AMR
methods in LMIC where capacities are limited. Given
the clinical consequences of this emerging multi-drug
resistant phenotype in low-middle income countries, fur-
ther studies could address the validity and feasibility of
molecular methods that simultaneously detect the muta-
tions associated with resistance to both quinolones and
macrolides. Effective molecular diagnostics may be a
feasible approach to guide the antimicrobial treatment of
C. jejuni infections.

Conclusions
The present study developed a rapid, sensitive, and spe-
cific molecular technique for the detection of T86I mu-
tations in the gyrA gene of C. jejuni that appears
strongly associated with FQ resistance. Because of the
high prevalence of C. jejuni in LMIC and the concern
for increasing FQ resistance, this detection approach
could be broadly employed in epidemiologic surveillance
to reduce time and cost in regions with limited
resources.
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