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Abstract

were estimated in RV and AGE hospitalisations respectively.

Background: Several studies have shown a substantial impact of Rotavirus (RV) vaccination on the burden of RV
and all-cause acute gastroenteritis (AGE). However, the results of most impact studies could be confused by a
dynamic and complex space-time process. Therefore, there is a need to analyse the impact of RV vaccination on RV
and AGE hospitalisations in a space-time framework to detect geographical-time patterns while avoiding the
potential confusion caused by population inequalities in the impact estimations.

Methods: A retrospective population-based study using real-world data from the Valencia Region was performed among
children aged less than 3 years old in the period 2005-2016. A Bayesian spatio-temporal model was constructed to
analyse RV and AGE hospitalisations and to estimate the vaccination impact measured in averted hospitalisations.

Results: We found important spatio-temporal patterns in RV and AGE hospitalisations, RV vaccination coverage and in
their associated adverted hospitalisations. Overall, ~ 1866 hospital admissions for RV were averted by RV vaccination
during 2007-2016. Despite the low-medium vaccine coverage (~ 50%) in 2015-2016, relevant 36 and 20% reductions

Conclusions: The introduction of the RV vaccines has substantially reduced the number of RV hospitalisations, averting ~
1866 admissions during 2007-2016 which were space and time dependent. This study improves the methodologies
commonly used to estimate the RV vaccine impact and their interpretation.
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Background

Rotavirus (RV) is the leading cause of gastroenteritis in
children <5 years of age worldwide [1]. Prior to the li-
cense of the two live-attenuated rotavirus vaccines (RV1;
Rotarix®, GSK and RV5; RotaTeq®, MSD) in 2006 and
2007, respectively, RV infection caused approximately
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138 million episodes of acute gastroenteritis (AGE) per
year (~ 2 million hospitalisations), of which ~ 3.6 million
(~ 87,000 hospitalisations) occurred in Europe [2].

The World Health Organization (WHO) recom-
mended including RV vaccination worldwide. The rec-
ommended schedule is two (RV1) or three (RV5) oral
doses and should be completed between 6 and 32 weeks
of age. Currently, 98 countries have introduced RV vac-
cines into their national immunisation programs [3].
This measure has had a major impact on the burden of
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AGE, decreasing RV outpatient visits and hospitalisa-
tions by 60-90% in Europe [4-7],

Although in Spain RV vaccines are recommended by
the Spanish Paediatric Association but not funded by the
National Health System (NHS), several post-authorization
studies have also shown their effectiveness and impact on
AGE and RV-AGE hospitalisations [8—12]. The Valencia
Region of Spain could show a specific coverage-related
impact of RV vaccines on AGE and RV-AGE hospitalisa-
tions and costs, despite the low-medium vaccine coverage
(40-50%) [8].

Following WHO recommendations, most post-
authorization studies usually estimate impact of the RV
vaccine by comparing trends of RV or AGE hospitalisa-
tions in pre- and post- vaccination periods [7, 13, 14].
However, this ecological design is highly prone to bias
and confounding [15-17].

In fact, a number of key studies have shown that the
spread of infectious diseases are heterogeneously distrib-
uted in space because places differ in their environmen-
tal and population characteristics [18, 19]. Consequently,
epidemiological studies are often confounded by com-
plex and dynamic spatio-temporal processes [18, 20]. RV
vaccine uptake and hospitalisations could, therefore, vary
from time to time and between places for different rea-
sons, including complex interaction of population demo-
graphics, socioeconomic inequalities, environmental
factors, circulation of RV strains and their interactions
across space and time [21]. Spatial variation in RV vac-
cination coverage [22] and in RV hospitalisations has
been previously shown in the USA, Germany, Brazil,
New Zealand [23-25].

A previous study in Spain showed strong variability in
both vaccination coverage and RV/AGE hospitalisation
rates over time and between health departments [8].
Thus, it would be important to evaluate variations in the
RV/AGE hospitalisation risk and the impact of RV vaccin-
ation in a space-time framework to detect geographical-
time patterns while avoiding the potential confusion
caused by population inequalities in the impact estimates
[7, 8, 12, 18, 24, 26].

Our aim is to assess the spatio-temporal impact of RV
vaccines on RV and AGE-associated hospitalisations in
children under 3years of age in the Valencia Region
using real-world data. In this study, real space-time rota-
virus vaccination impact is predicted in terms of number
of averted hospitalisations.

Methods

Setting and study population

This is a retrospective, population-based study using
real-world data from the Valencia Region, including all
children less than 3years old living in the Region be-
tween 2005 and 2016.
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The Valencia Region of Spain has approximately 4,
900,000 inhabitants. Of them, around 3% (~ 150,000
children) are younger than 3 years old. The regional health
system is divided into 34 public hospitals (24 of them with
paediatric emergency rooms) and 241 health care districts
structured into 24 health departments. As RV vaccines are
administered to infants from six weeks of age, children
with the first dose of RV vaccine recorded before six
weeks of age were excluded from the study.

Data sources

The Valencia Region has a set of multiple electronic da-
tabases collecting health and sociodemographic data
from 98% of the population [27]. The population infor-
mation system (SIP) was used to determine the popula-
tion and their socio-demographics characteristics (sex,
date of birth, health department, and health care dis-
trict). Health care district and department are assigned
by place of residence. Hospitalisations were collected
from the minimum basic data set (MBDS). The vaccine
information system (SIV) was used to obtain the vacci-
nated population; this source captures the immunisation
history of each individual. Population, hospitalisation,
and vaccination data were linked at individual level
through a unique personal identification number [28].

Outcomes and exposure

Our outcomes were identified from MBDS through a
search of the following ICD-codes: (a) RV hospitalisa-
tions: hospitalisations with a discharge diagnosis of en-
teritis due to rotavirus (ICD-9-CM code 008.61, ICD-10
A08.0) in any diagnosis position. (b) AGE hospitalisations:
hospitalisation with a discharge diagnosis of gastroenteritis-
associated episode (ICD-9-CM codes 001-009, 558.9,
787.91; ICD-10 codes A00 — A09, K52.XX, R19.7) in any
diagnosis position.

Vaccination status was assessed as a time-varying vari-
able. Children were considered vaccinated from the date
of the first dose of RV5 or RV1 and unvaccinated before
that date. Children with no recorded rotavirus vaccin-
ation in SIV were considered as unvaccinated.

Vaccination coverage was calculated as the proportion
of the children < 3 years old vaccinated with at least one
dose of RV1 or RV5.

Spatio-temporal analyses

The database for the analysis gathered population and
hospitalisations aggregated by vaccination status, sex,
age, health department, biennial periods (two-years
period), and health care district.

A Bayesian spatio-temporal ecological model was con-
structed to analyse RV and AGE hospitalisation rates
and to estimate the impact of vaccination on
hospitalisations.
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The model assumed that the number of hospitalisa-
tions (for RV or AGE) in the different observation units,
Y={1 .. Vusadom ---» Vn}, followed a binomial distribu-
tion, where “v” indexes the two vaccination status, “s”
the two sexes, “a” the 3 age groups (0, 1 and 2 years old),
“d” the 24 health departments, “t” the 6 (biennial) pe-
riods, and “m” the 241 health districts. From now on, we
will index y by y; instead of y,5,4,, Where i spans all the
values of the sub-indexes v, s, a, d, t and m to make the
notation shorter. Thus, the model assumed proceeds as
follows:

y,~Bin(6;,N;), i = 1,..., 15,718

Where 6; is the hospitalisation rate and N; the popula-
tion for each observation unit. §; was modelled consider-
ing the logit link as follows:

6i Sum :
log( —— ) = log{ —+ +/J’0+Z/)’]X,+ocd
1-6, 1-5, .

+ U + Vi

where log(s f”’a ) acts as an offset term to control for

the hospital attraction (people who live near the hospital
are more frequently admitted to it than those who live
far from hospital, (see Additional file 1)), where §,,, is the
estimated hospitalisation rate for all causes measured in
each health care district. This rate was estimated using
the spatial Besag-York-Mollié model [29] on hospital ad-
missions for any cause. This offset makes that if no other
term in the linear predictor had an effect, the corre-
sponding risk, 6;, would be that corresponding to general
hospital admissions for that health care district. j3, is the
intercept term and f; are the parameters associated with
the categories of the covariates, X;: vaccination status,
sex and age. The health department random effect, a,,
was considered to fit the differences in admission pol-
icies between hospitals. a; was considered to have the
following distribution

az ~ N(0,0%),

where o is also estimated within the model. No spatial
dependence was considered for this term because it is
expected to fit the admission policies of each hospital,
which should not follow any spatial pattern. The biennial
period effect, u,, was introduced to control the expected
temporal variability in RV and AGE incidence. It was
modelled as a random effect considering correlation be-
tween adjacent periods by a first order random walk
modelled as an intrinsic conditional autoregressive
(ICAR) prior distribution. Besides the temporal and
spatial (health department) terms already mentioned, it
was considered appropriate to include a spatio-temporal
term that could jointly vary in time and space. The
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random effect v, reproduces this effect. This term is as-
sumed to follow a spatio-temporal autoregressive model
[30]. Thus, the spatio-temporal effect for the first period
was formulated as

-1/2
Vim = (1 —PZ) / Wim
and for the following periods
Vim = ,DVt— 1m + WtM7 L= Za "'767

where W,,, follows a spatial Besag, York and Mollie
model [29] for each time period t inducing spatial de-
pendence on v; ,,.. On the other hand, p controls the
temporal dependence in v, ,,. This parameter is assumed
to follow a uniform prior distribution between — 1 and 1.
Non-informative flat prior distributions were considered
for 8; (j=0, .., 3) parameters. Uniform prior distribu-
tions between 0 and 5 were considered for the standard
deviations of all the random effects in the model.

Predictive distributions were used to estimate the
number of rotavirus hospitalisations averted in order to
assess the impact of rotavirus vaccination by health care
district and time period. The number of cases averted by
vaccination was calculated as the difference between the
hospitalisations predicted by the adjusted model without
the vaccine effect and the hospitalisations predicted by
the model explained above.

R (Foundation for Statistical Computing, Vienna,
Austria) and WinBUGS (Cambridge Biostatistics Unit
and the Imperial College School of Medicine, London)
software were used to perform the analysis using
MCMC methods. A total of 2000 initial iterations were
used as burn-in period of the MCMC. Subsequently, 10,
000 iterations were run and only 1 in every 10 of them
was saved. Three chains were simulated in total. MCMC
convergence was assessed by visual inspection of history
plots of posterior samples, the Brooks-Gelman-Rubin
scale reduction factor, and the effective sample size im-
plemented in the R2WinBUGS package of R. All statis-
tical analyses conducted for this study are completely
reproducible, and the data and the R code used for stat-
istical analysis can be found as supplemental digital con-
tent to the paper.

Results

The study included 721,471 children < 3years old. Of
these, 189,247 were vaccinated against RV. There were a
total of 17,482 AGE hospitalisations, of which 28%
(4871) were codified as RV. AGE and RV hospitalisa-
tions accounted for 8.4 and 2.4% respectively of all hos-
pitalisations (207,014 hospitalisations for any cause).
Vaccinated children accounted for 2248 AGE and 200
RV admissions.
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Spatio-temporal hospitalisation rate and relative risk

Risk of RV and AGE hospitalisations decreased with RV
vaccination (Table 1). RV and AGE hospitalisation rates
were 86% (95% CI: 84—88) and 47% (95% CI: 45-50)
lower in vaccinees, respectively. Risk of RV and AGE
hospitalisation also decreased with increasing age, by
72% (95% CIL: 70-74) and 58% (95% CI: 56—60) respectively
in two-year-old children as compared to those aged less
than one year old. Risk of RV and AGE-hospitalisation was
respectively 19% (95% CI: 15-23) and 15% (95% CI: 12—-18)
lower in girls as compared to boys. A strong variability in
both RV and AGE hospitalisation rates was found between
health departments (Additional file 2). Risk of AGE hospi-
talisation showed a downward trend during the study (Add-
itional file 2), while the RV rate only declined between 2005
and 2010. Once controlled the vaccine effect, RV peaked in
2013-2014, with an 8% (95% CI: 6—14) higher rate than the
average risk for the whole study period (Additional file 2).
Additional structured spatio-temporal interaction was
found for both outcomes. The spatio-temporal effect maps
(Additional file 2) showed spatial clusters after adjusting for
confounders.

Spatio-temporal RV vaccination coverage

Rotavirus vaccination coverage varied considerably
across the Valencia Region during the study period, with
pockets of undervaccination (lower coverages) in many
health care districts. Vaccination rates increased over
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the years in the districts. In 2016, 50% of the health care
districts had a coverage higher than 53% (IQR: 35-64%)
(Fig. 1). The overall RV vaccination coverage increased
from 0 to 49% during the study period.

Spatio-temporal RV vaccination impact

The number of hospitalisations averted by vaccination
was coverage-dependent (Table 2), with impact of vac-
cination increasing as the number of vaccinees in-
creased. With 189,247 children vaccinated, 1142 (95%
CL: 1069-1222) RV and 1866 (95% CI: 1736-1992) AGE
hospitalisations were averted. This represented overall
reductions of 19.9% (95% CI: 19.7-20.2) in RV hospitalisa-
tions and 10.2% (95% CIL: 9.7-10.5) in AGE hospitalisa-
tions for the whole period. The number of hospitalisations
averted increased over time with increasing coverage. In
2015-2016, with a vaccination coverage of approximately
50%, there were reductions of 35.6% (95% CI: 35.2—36.1)
and 19.7% (95% CIL: 19.0-20.3) in RV and AGE hospitali-
sations respectively (Table 2). Maps in Fig. 2 show the dis-
tribution of RV and AGE hospitalisations averted by
health care district over time. The impact on RV and AGE
hospitalisations was greater in health care districts with
higher coverage. Assuming 100% RV vaccine coverage, RV
hospitalisations would be expected to be reduced by
85.8% (95% CI: 84.8-86.5) or 4920 (95% CI: 4602-5221)
hospitalisations in the case of RV, and AGE hospitalisa-
tions by 46.9% (95% CI: 45.1-48.4) or 8606 (95% CI:

Table 1 Model coefficients, Odds Ratio (OR) and 95% credibility interval (C)

RV AGE
Coefficient, OR (95% Cl) Coefficient, OR (95% Cl)
posterior mean (95% Cl) posterior mean (95% Cl)
Intercept —4.88(=5.01, — 4.76) —3.78(-3.88, = 3.67)
Vaccination Status
Unvaccinated 0 1 0 1
Vaccinated -1.96(=2.11, = 1.81) 0.14(0.12,0.16) —0.64(-0.68, —0.59) 0.53 (0.5, 0.55)
Age
O years 0 1 0 1
1 year —0.24(-0.3, - 0.18) 0.79 (0.74,0.84) —-0.16(=0.19, = 0.13) 0.85 (0.82,0.88)
2 years -1.28(-1.36,-1.2) 0.28 (0.26,0.3) -0.87(- 091, - 0.83) 042 (04,0.44)
Sex
Male 0 1 0 1
Female -021(=0.27, - 0.16) 0.81(0.77,0.85) -0.16(-= 0.2, —0.13) 0.85 (0.82,0.88)
Heterogeneity (random effect)
Health department (unstructured) 0.28 (0.18,043) 0.22 (0.15,0.32)
Health care district (unstructured) 0.08 (0,0.18) 0.05 (0,0.11)
Health care district (structured) 0.38 (0.3,047) 032 (0.27,0.37)
Period (structured) 9 (0.08,0.46) 0.17 (0.08,0.39)
P 0.39 (0.15,0.6) 036 (0.21,0.5)

See Additional file 2: OR and its 95% Cl for period, health department, and spatio-temporal effects
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Fig. 1 Description of RV vaccine coverage (%) by health care district and year

8056-9148) hospitalisations as compared to admissions if
no child had been vaccinated during the study period.

Discussion

This is the first study estimating the spatio-temporal im-
pact of RV vaccination on RV and AGE hospitalisations.
The number of averted hospitalisations by RV vaccin-
ation was increasing in space and time in the Valencia
Region during the study period in children < 3 years.
Opverall, ~ 1866 hospital admissions for AGE (potentially
attributable to RV) were averted during 2007-2016. Des-
pite the low-medium vaccine coverage (~ 50%) in 2015—
2016, relevant 36 and 20% reductions were estimated in
RV and AGE hospitalisations respectively. It should be
noted that ~ 8606 hospitalisations would have possibly
been averted during the whole study period if all chil-
dren had been vaccinated. Direct benefits of vaccination
were observed in the reduction of hospitalisation rates
for RV (86%) and GEA (47%) in vaccinated children.
These results are in accordance with the vaccine effect-
iveness estimated in the Valencia Region previously [9].
Regarding the spatio-temporal results, substantial vari-
ability was seen in RV vaccine coverage and hospitalisa-
tion risk for RV and AGE among health departments
and health care districts. Spatio-temporal clusters were

clearly distinguished. These patterns could be explained
by climatic, environmental, sociodemographic, or eco-
nomic differences, or by the different admission policies
of health departments.

Although other impact studies reported relevant re-
ductions in both RV and AGE hospitalisations in chil-
dren <5 years following RV vaccination [4, 6, 7, 13, 14,
31-33], only two of them showed a coverage-dependent
response [8, 34]. Moreover, many of them were time-
trend ecological studies comparing hospitalisation data
in pre and post-vaccine populations and a historical pre-
vaccine group [7, 13, 14, 33]. Even though this is the
most commonly used method, it has been associated
with potential confusion bias [15, 16]. The reported im-
pact of the vaccination could be due to other secular
trends caused by, changes in reporting, in medical prac-
tices, in health seeking behaviour, etc. [35]. Besides, vac-
cine impact based on hospitalisation data is prone to
confounding, because hospitalisations rates are closely
related to changes in the quality, access and use of the
health care system which often occur simultaneously
with introduction of new vaccines [17].

On the other hand, few spatial and spatio-temporal
models have studied RV and AGE dynamics and none of
them included the vaccination status of the population.

Table 2 Impact of rotavirus vaccination on RV and AGE hospitalisations by period. Percentage and number of hospitalisations
averted estimated by the model adjusted by age, sex, health care district, health department, biennial periods, and hospital

attraction

%, N (95% Cl)
Period Children Vaccinated (N)  Unvaccinated (N) RV Vaccine coverage (%) RV Hospitalisations averted ~ AGE Hospitalisations averted
2005-2006 149 235322 0.1 0%, 0 (0, 0) 0%, 1 (1, 1)
2007-2008 28,202 229,239 11.0 9%, 92 (84, 100) 5%, 169 (157, 180)
2009-2010 61577 198,730 23.7 23%, 211 (193, 230) 13%, 390 (361, 420)
2011-2012 86,630 163,169 34.7 24%, 213 (193, 232) 13%, 359 (330, 387)
2013-2014 86,141 144,928 373 30%, 303 (274, 332) 16%, 446 (412, 482)
2015-2016 106,331 112,376 48.6 36%, 323 (295, 356) 20%, 502 (463, 543)
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Spatial variation in RV hospitalisations explained by
sociodemographic characteristics of the population has
previously been shown in studies conducted in Germany
and New Zealand [23, 24]. Other studies in the USA and
Brazil found that spatio-temporal variation in birth rate
can lead to secular changes in the RV pattern [21, 25].
Finally, a study conducted in Bhutan showed that rainfall
and temperature explain much of the spatio-temporal
dynamics of diarrhoea (possibly due to RV infection in
approximately 23% of cases) [31]. The studies developed
in Germany and New Zealand were based in aggregated
data over time, however, caution should be taken when
interpreting this analysis because the area-specific risk
may be overestimated or underestimated. Furthermore,
none of these standard models considered spatio-
temporal dependence; however, what occurs in a health
care district is intimately related to what occurs in the
adjacent one and is also related to what happened previ-
ously [36].

The present study analysed the impact of RV vaccin-
ation on RV and AGE hospitalisations from a different
point of view. We developed a sophisticated spatio-
temporal model that allowed us to estimate the RV vac-
cination impact in terms of adverted hospitalisations ac-
cording to the number of children vaccinated. The
spatio-temporal approach improves the commonly used

methodologies to estimate the RV vaccine impact and its
interpretation as follows. First of all, this analysis showed
the evolution of the impact of RV vaccination and the
risk of hospitalisation for RV/AGE in the Valencia Re-
gion at the health care district level over time. Second,
adjusting by spatial variables such us health care district
and health department in the analysis, several potentially
attributable biases can be controlled. Those biases could
have been caused by economic inequalities, environmen-
tal factors, socio-demographic differences or even pos-
sible changes in hospitalisations-admission policies [21,
37-39]. Moreover, the hospitalisation rate for any cause
of each health care district was included to adjust the
confusion caused by hospital attraction or other secular
trends [17]. Finally, the Bayesian approach used allowed
us to adequately capture dependencies among health
areas and the potential relationship of data over time
that cannot be easily modelled in classical statistics [40,
41].

Nevertheless, some limitations of our study should be
highlighted. First of all, RV vaccines are not included in
the official immunisation schedule, which may suggest
differences between rotavirus vaccinees and non-
vaccinees in terms of socioeconomic conditions and
health-seeking behaviour. Therefore, socioeconomic fac-
tors might be an important confounder of our results
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and admissions at private hospitals should also be con-
sidered in future studies.

Secondly, although the positive predictive value of the
rotavirus ICD-9-CM code identifying acute gastroenter-
itis attributable to rotavirus using MBDS resulted in 90%
[9], different immunochromatographic methods with
different sensitivities and specificities could have been
used in the different hospitals during the study period
[42]. In fact, based on the difference found in the num-
ber of hospitalisations prevented for AGE and RV (1866
vs. 1142), ~ 40% of underdiagnosis in RV hospitalisations
was detected in the present study. Thirdly, health care
district and health department could have varied over
time; but only the last updated information was avail-
able. Fourthly, children who were unable to receive RV
vaccines according to manufacturer recommendations
(i.e. immunocompromised children) were not excluded
from the analysis due to the lack of information.

Finally, it should be noted that both vaccines (RV1
and RV5) were used concurrently until 2010. But, RV5
was the only rotavirus vaccine available in Spain between
2010 and 2016. Therefore, results will have a limited
value for estimating the impact of RV1.

Conclusions

In summary, the introduction of the RV vaccines has
substantially reduced the number of RV hospitalisations.
The sophisticated spatio-temporal analysis allows us to
show the impact of different vaccine coverage rates in
terms of avoided hospitalisations in a geographical-time
framework. Interestingly, our study predicted that ~
8606 RV hospitalisations could have been adverted with
all children vaccinated. This study improves the method-
ologies commonly used to estimate the RV vaccine im-
pact and its interpretation. The spatio-temporal model
avoided the potential confusion caused by population in-
equalities in the impact estimations. It also detects
spatial clusters of the RV and AGE-hospitalisation risk
attributable to common environmental, demographical,
or cultural effects shared by neighboring regions.
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